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Abstract 

 

 

The Louisiana oyster industry is greatly impacted by freshwater and sediment diversions that are 

part of the effort to restore the state’s coastline. A habitat suitability index (HSI) proposes 

species-habitat relationships that can be instrumental in creating impact assessments and 

suitability predictions for management as new diversions are implemented. An oyster 

(Crassostrea virginica) HSI was developed using three variables crucial to oyster sustainability: 

average annual salinity, minimum monthly salinity, and average salinity during the spawning 

season. These Legacy HSI visualizations show annual fluctuations in the distribution of zones 

suitable for oyster cultivation prior to proposed diversions in Pontchartrain and Barataria Basins 

from 1967 to 2016. Modeling suitability based upon these variables can provide crucial 

information for timing the use of diversions to lessen harmful effects upon the oyster industry as 

well as indicate new potentially suitable areas that the diversions may create. 
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Introduction 

 

 
Threats to the coastal zone of Louisiana necessitate the use of Mississippi River sediment 

and freshwater diversions to restore the receding wetlands of the Pontchartrain and Barataria 

basins. The increased volume of sediment and fresh water will shift the suitable zone for oyster 

cultivation down estuary towards the Gulf of Mexico.  Suitable zones for oyster cultivation from 

1967 to 2016 were characterized using an oyster Habitat Suitability Index (HSI). Assessment 

strategies of the past evaluated suitability using only salinity ranking strategies (Chatry et al. 

1983), or salinity and substrate (Cake 1983, Soniat & Brody 1988) but did not include 

temperature effects. This new HSI incorporates temperature, and the synergistic effects of 

temperature and salinity to further refine suitability assessments. Legacy HSI visualizations show 

annual fluctuations in the distribution of zones suitable for cultivation of Crassostrea virginica 

oysters that are subject to the effects of diversions.  

Habitat Suitability Index Model 

 “Habitat quality can only be defined as the capability of a site to support oysters.” (Soniat & 

Brody 1988). A habitat suitability index model (HSI) is “a hypothesis of species-habitat 

relationships” (Cake 1983) that does not account for every component of oyster fitness nor 

demonstrate causation of observed effects. Nonetheless, it can be useful in management and 

understanding oyster growth and survival, and to detect areas that will be impacted by freshwater 

diversions (Cake 1983, Volety et al. 2008, Soniat et al. 2013).  The HSI approach is a tool to be 

used in habitat evaluation procedures (HEP) for management of a particular habitat unit (HU) 

and the species within it. It is defined as an aggregation of multiple suitability indices, each 

representing a specific habitat component that is integral to the target species survival or 
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reproduction, and results in a ratio from 0.0 to 1.0 that expresses the range of habitat conditions 

(USFWS 1980).  To effectively enhance prospective management decisions, a baseline must be 

established as a basis for same species comparisons of different HU’s or single species 

comparisons for a single HU over time (USFWS 1980). The usefulness of a HSI depends on the 

quality of the modeling data, and consideration of life history and seasonal variations of the 

target taxon (Brooks 1997).   

The Eastern Oyster (Crassostrea virginica)  

The eastern oyster, Crassostrea virginica (Gmelin), is an asymmetrical bivalve mollusk 

native to intertidal and subtidal estuarine areas ranging from Canada, southward along the 

eastern and south eastern coasts of North America into the Gulf of Mexico to the coasts of Brazil 

(Buroker 1983). It has been introduced on the west coast of North America, Hawaii, Japan, 

Australia and Great Britain (Ahmed 1975, Stanley & Sellers 1986). Oysters are a keystone 

species that affect water quality, provide food and habitat for multiple organisms within their 

environment, and function as ecosystem engineers. (Barnes et al. 2007, NOAA 2007) A single 

oyster can filter 34 liters of water per hour, and in doing so removes phytoplankton, sediments, 

organic carbon and other small organisms from the water column (Bushek & Allen 1996, Barnes 

et al. 2007). Their pseudofeces is a food source for fish and benthic organisms (Luckenbach et al. 

1999, Barnes et al. 2007) and oysters themselves are an important food source for stone crabs, 

black drum, rays, oyster drills, gastropod mollusks and many other aquatic creatures (Cake 1983, 

McGuire 2006, Banks et al. 2016). Oyster reefs provide habitat for shrimp, crabs and fish 

(Chapman & Underwood 2011, Banks et al. 2016) and also protection against coastal erosion 

(NOAA 2007). In addition to their ecological role, oysters support commercial fishery. 

Nationwide, the industry peaked in the late 1800’s to early 1900’s, producing up to 160 million 
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pounds of oyster meat in a single year (MacKenzie & Wakida-Kesunoki 1997), but has since 

declined due to over fishing, hypoxia and habitat destruction (Luckenbach et al. 1999); annual 

harvest was about 25 million pounds in 2015 (NOAA 2017). According to Shumway (1996) the 

synergistic effects of temperature and salinity almost certainly have a profound effect on C. 

virginica and other estuarine species. Although oysters can tolerate a wide range of temperatures 

(Cake 1983), optimal temperature for adult oysters is 20-30⁰C and ideal salinity between 14 and 

28, (Stanley & Sellers 1986) although this fluctuates according to geographic location (Shumway 

1996).  

In Louisiana, C. virginica is predominantly subtidal (Banks et al. 2016) and most 

productive at salinities between 5 and 15. At moderate salinities oysters avoid osmotic and 

reproductive failure associated with low salinity and parasitic infections and predators that prefer 

higher salinity environments (Ray 1954, Chatry et al. 1983, Craig et al. 1989, NOAA 2007, 

LaPeyre et al. 2009, LaPeyre et al. 2013).  Typically for C. virginica, spawning ensues when 

temperature is above 20oC and salinity above 10 however, in the northern Gulf of Mexico 

spawning ensues as temperatures near 25oC with salinities closer to 15. (NOAA 2007, LaPeyre et 

al. 2013). The spawning season for C. virginica in the northern Gulf of Mexico can occur from 

May to June and again in September (Cake 1983).  The larval forms are motile and temporarily 

planktonic which assists in dispersal to permanent benthic settling locations (Stanley & Sellers 

1986). They require clean, hard substrate to settle upon (Newell 1988). Adults exhibit phenotypic 

plasticity relating to shell shape and thickness, dependent upon the type of habitat substrate (Eble 

& Scro 1996, NOAA 2007). Among the many predators and parasites that attack oysters, dermo 

disease caused by the protozoan Perkinsus marinus (Mackin 1951, Soniat 1985, NOAA 2007) is 

one of great concern. The higher salinity and long warm seasons (above 20oC for more than 6 
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months per year) in northern Gulf waters provide a favorable environment for the proliferation of 

P. marinus (Mackin 1951, Menzel & Hopkins 1955, Soniat et al. 2006, WORMS 2011).   

Genetic differences have been identified amongst oyster populations ranging from the 

American Northeastern coast, Florida and westward across the Gulf of Mexico to Texas (Bushek 

& Allen 1996, NOAA 2007). Genotypes have been selected and cultivated to improve survival 

and growth (Allen et al. 1993).  Culturing specific oyster lineages with genetic resistance to 

Dermo and MSX (an oyster disease caused by a haplosporidian parasite), is a common practice 

in oyster aquaculture (Allen et al. 1993). Another approach is to induce triploidy, and while it 

has not been shown to confer disease resistance to Dermo or MSX, it renders oysters sterile 

which allows them to allocate energy to growth instead of reproduction. In ideal conditions, 

triploidy allows oysters to evade disease long enough to reach harvest size before succumbing to 

severe infections (Allen et al. 1993, Degremont et al. 2012).  

Salinity and temperature are key factors in oyster reproduction, growth, and mortality 

(LaPeyre et al. 2015, Lowe et al. 2017). C. virginica exhibit protandric hermaphroditism, starting 

out as male and changing to develop female gonads as they age. Warmer springtime 

temperatures initiate gametogenesis and further increasing temperatures (near 25oC.) of late 

spring and summer prompt spawning (Stanley & Sellers 1986, Lorio & Malone 1994). Oysters 

release gametes into the water column that are suspended in the water column until settling on 

firm, clean substrate (Stanley & Sellers 1986). There is evidence of at least two races of C. 

virginica: one occupying the Atlantic coast and the other in the Gulf of Mexico, with a 

transitional zone along the eastern Florida coast (Loosanoff & Nomejko 1951, NOAA 2007).  

These races vary in gonadal maturation time depending on each race’s optimal temperature, and 

each has a specific spawning temperature ranging from 15oC - 25oC (Loosanoff & Nomejko 



 

5 

 

1951, Stanley & Sellers 1986).  This suggests that predictive habitat suitability modeling should 

be population and location specific. The combination of reduced salinities of 10.7–16.1 and 

higher temperatures between 20oC–26.3oC have recently been shown to be ideal for optimal 

growth of spat, seed and sack oysters in southern Louisiana however, local adaptations dictate 

the most effective salinity and temperature for each reef and size class (LaPeyre et al. 2013, 

Lowe et al. 2017). Oysters close their valves as a defense to freshwater disturbances but this 

behavior poses a tradeoff between defense and feeding, resulting in reduced growth (LaPeyre et 

al. 2013).  Short episodes of low salinity do not significantly impact oyster mortality or growth; 

however, extended freshet events are fatal, especially those combining low salinity with high 

temperatures (Cake 1983, Soniat & Brody 1988, LaPeyre et al. 2013, Wang et al. 2017). Higher 

salinities and warm temperatures are favorable for the perseverance of P. marinus that causes 

Dermo disease and marine predators such as the gastropod Stramonita haemastoma (Soniat 

1985, Bushek & Allen, 1996, Luckenbach et al. 1999, Turner 2006). A positive effect of short 

freshening events is the reduction of marine predators and diseases that affect oyster growth and 

survival (Gunter 1955, Soniat 1985, LaPeyre et al. 2009). 

Barataria and Pontchartrain Basins 

The Pontchartrain Basin is located east of the Mississippi river, bounded by the state of 

Mississippi in the north, Pearl River on the east and the Chandeleur Islands in the south, and 

includes the Biloxi marsh and Breton Sound. It is a watershed encompassing 10,000 square miles 

of Louisiana land that drains into rivers, bayous, swamps and lakes that connect with the Gulf of 

Mexico, and includes forests, wetlands and marshes crucial to the cultural and commercial 

economy of southern Louisiana (LPBF 2017). Barataria Basin is just over 2,445 square miles of 

forest, swamps, and marshes, bounded on the north and east by the Mississippi River, the west 
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by Terrebonne Basin and opening to the south to barrier islands and the Gulf of Mexico (Conner 

et al.1987, CWPPRA 2017). Coastal areas of southern Louisiana are subject to fluctuations 

including hurricanes, floods, droughts and diversions (Chesney et al. 2000, Lopez 2003). Gunter 

(1955) correlated land loss with saltwater intrusion and oyster mortality by mapping erosion of 

portions of the barrier islands from Grand Island to Last Island.  Navigation canals like the 

Mississippi River Gulf Outlet (MRGO), the Intercoastal Waterway (ICW) and Inner Harbor 

Navigational Canal (IHNC) provide channels for saltwater intrusion into the surrounding 

wetlands (Lopez 2003, Shaffer et al. 2009). The three waterways together effectively connected 

brackish Lake Pontchartrain to the higher saline waters of the Gulf of Mexico. Barataria Basin is 

divided by the Gulf Intracoastal Waterway (GIWW) that extends from the Mississippi River to 

the Gulf of Mexico, the Barataria Bay Waterway that reaches from Grand Isle to the GIWW, and 

the Empire-Gulf Waterway which connects the Gulf of Mexico to the Mississippi River 

(CWPPRA 2017). 

Storms and droughts 

Storms entering the Gulf of Mexico (Table 1) can influence the salinity of coastal Louisiana 

(Conner et al. 1989, Weather Research Center 2002, Lopez 2003, Gurung 2014, NOAA 2018). 

Wind events caused by storms often push saline water and sediments inland causing anoxic 

conditions in estuarine habitats, and depending on frequency, duration and severity of the events, 

heavy rains associated with storms can dilute salinity (Michener et al. 1997, Mulholland et al. 

1997, Sallenger 1997). Damage to habitat from storm surge and winds (storms above category 3) 

also affect oyster abundance by siltation of oyster reefs and alteration of salinity. Gulf of Mexico 

storms of category 3 or above near the Louisiana coastline occurred in the years 1969-71, 1974-

75, 1977, 1979, 1983, 1985, 1992, 1995, 1998, 2002, 2004-05, and 2008, often causing extensive 
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damage to the coastline (Roth 2010, NOAA 2018). Recent Louisiana droughts occurred in 1998 

and 2000, however, droughts in the Mississippi River watershed can also reduce freshwater input 

(NOAA 2018).  

Diversions 

Freshwater and sediment diversions from the Mississippi River are in place to offset 

effects of the navigation canals and correctly utilized, enhance the Louisiana oyster industry 

(Viosca 1927, Meffert & Good 1996). Freshwater diversions reduce salinity of inland waters 

forcing suitable oyster habitat more seaward (CWPPRA 1993, Lopez 2003, Soniat et al. 2004 & 

2013) and sediment diversions designed to reduce land loss in the marshes also affect salinity 

(Caffey & Schexnayder 2002). Diversions east of the Mississippi River such as the Bonnet Carré 

Spillway, Mardi Gras Pass, Caernarvon Diversion and the structures at Fort St. Philip affect 

wetlands from Breton Sound to Mississippi Sound, including Lakes Pontchartrain and Borgne 

(Lopez 2003, USACE 2010, Teal et al 2012). West bank diversions such as Davis Pond, The 

siphons at Naomi and West Pointe a la Hache and the West Bay diversion impact Barataria Basin 

(USACE 2010, Teal et al 2012). Some of the main diversions are summarized (Table 1).  
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Table 1. 

Important Diversions, Storms, Floods and Droughts. 

Name Year Event Type Affected Area Source 

 

Bonnet Carré 

Spillway 

 

1937, 1950, 

1973, 1975, 

1979, 1983, 

1997, 2016 

 

Freshwater 

Diversion 

 

Lakes Pontchartrain 

and Borgne, 

Mississippi Sound 

 

Roberts et al. 1992, Lane et al. 2001, 

Lopez 2003, Turner 2006, USACE 

2010, Teal et al. 2012, Gurung 2014, 

Banks et al. 2016 

Caernarvon 

Diversion 

1991-present Freshwater  and 

Sediment 

Diversion 

Upper Plaquemines, 

St. Bernard 

wetlands, 

Delacroix/Big Mar 

Pond, Bayou 

Mandeville, Lake 

Leary 

Roberts et al. 1992, Meffert & Good 

1996, Lane et al. 2001, Caffey & 

Schexnayder 2002, Lopez 2003, 

Snedden et al. 2007, LADWF 2010, 

SLFPAE 2010, USACE 2010, Teal 

et al, 2012, Janasie 2013, Gurung 

2014, LPBF 2014, Smith et al. 2015,   

Banks et al.  2016 

 

White's Ditch 

Diversion 

1963-present Freshwater and 

Sediment 

Diversion 

Breton Sound Basin, 

Phoenix between 

Mississippi River 

and River aux 

Chenes 

USACE, 1984, Meffert & Good 

1996, Caffey & Schexnayder 2002, 

SLFPAE 2010, USACE 2010, Teal 

et al. 2012, Janasie 2013, USACE 

2013, Gurung 2014 

 

Violet Siphon 1957-present Freshwater 

Diversion 

St. Bernard, Bayou 

Lamoque, (connects 

Mississippi River 

and California Bay 

near Empire) 

 

Roberts et al. 1992, Caffey & 

Schexnayder 2002, Teal et al. 2012, 

Janasie 2013, Gurung 2014 

 

Bohemia Spillway 1924-present Freshwater and 

Sediment 

Diversion 

Southwestern 

Breton Sound 

Estuary, South of 

Pointe a la Hache 

Roberts et al. 1992, USACE 2010, 

Gurung 2014, Lopez et al. 2014, 

Smith et al. 2015 

 

Mardi Gras Pass 

 

 

2011-present 

 

Freshwater 

Diversion 

 

Bohemia Reach, 

Breton Sound 

 

Teal et al. 2012, Lopez et al. 2014 

 

Ostrica Lock 1880's, 

1940, 1953, 

2011-present 

Freshwater 

Diversion 

Breton Sound (south 

of Bohemia Reach), 

Ostrica, 

Plaquemines 

 

USACE 1984, Teal et al. 2012, 

Janasie 2013 

Channel Armor 

Gap Crevasse 

1997-present Sediment 

Diversion 

Venice, Delta 

National Refuge, 

Mary Bowers Pond, 

Pilottown, southern 

Mississippi River 

Delta 

 

Rodrigue 2003, Teal et al. 2012 
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Table 1. 

Important Diversions, Storms, Floods and Droughts. 

Name Year Event Type Affected Area Source 

Bayou Lamoque 

Structures 

1955 and 

1978- present 

Freshwater and 

Sediment 

Diversion 

Breton Sound, Black 

Bay 

USACE 1984, Roberts et al. 1992, 

Meffert & Good 1996, Caffey & 

Schexnayder, 2002, USACE 2010, 

Teal et al. 2012, Janasie 2013,  

Gurung 2014, Banks et al. 2016 

 

Davis Pond 2001- present Freshwater 

Diversion 

Barataria Basin, 

Lake Cataouatche 

Roberts et al. 1992, Caffey & 

Schexnayder 2002, USACE 2010, 

Teal et al. 2012, Janasie 2013, 

Gurung 2014, Banks et al. 2016 

 

Naomi Siphon 1993- present Freshwater 

Diversion 

Barataria Basin, 

Plaquemines 

Roberts et al. 1992, USACE 2010, 

Teal et al. 2012, Janasie 2013 

 

West Pointe a la 

Hache Siphon 

1993- present Freshwater 

and Sediment 

Diversion 

Barataria Basin, 

Plaquemines 

Roberts et al. 1992, Caffey & 

Schexnayder 2002, USACE 2010, 

Teal et al. 2012, Janasie 2013, 

Gurung 2014 

 

West Bay 

Diversion 

2003 Sediment 

Diversion 

Barataria Basin, 

Venice 

USACE 2010, Teal et al. 2012, 

Gurung 2014 Smith et al. 2015 

 

Old River Control 

Structure 

1963-present Freshwater 

and Sediment 

Diversion 

Prevents Mississippi 

River from diverting 

into Atchafalaya 

Basin 

 

Roberts et al. 1992, Teal et al. 2012 

Hurricane 

Camille 

8/14/1969 Ms. Storm (CAT5) Gulf of Mexico 

 

 

Weather Research Center 2002, 

NOAA 2018 

Hurricane Celia 8/31/1970 Tx. Storm (CAT3) Gulf of Mexico Weather Research Center 2002, 

NOAA 2018 

Hurricane Edith 1971 Storm (CAT5) Gulf of Mexico 

 

Weather Research Center 2002, 

NOAA 2018 

Hurricane 

Carmen 

8/29/1974 La. Storm (CAT4) Gulf of Mexico 

 

 

Weather Research Center 2002, 

NOAA 2018 

Hurricane Eloise 9/13/1975 Al. Storm (CAT3) Gulf of Mexico 

 

 

Weather Research Center 2002, 

NOAA 2018 

Hurricane Babe 1977 Storm (CAT1) Gulf of Mexico 

 

 

Weather Research Center 2002, 

NOAA 2018 

Hurricane Anita 8/29/1977 

Mexico 

Storm (CAT5) Gulf of Mexico 

 

 

Weather Research Center 2002, 

NOAA 2018 
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Table 1. 

Important Diversions, Storms, Floods and Draughts. 

Name  Year Event Type Affected Area  Source 

Hurricane 

Frederic 

8/29/1979 Al. Storm (CAT4) Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Claudette 

 

1979 Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Bob 1979 Storm (CAT1) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Alicia 8/15/1983 Tx. Storm (CAT3) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Elena 8/28/1985 Fl./La. Storm (CAT3) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Juan 1985 Storm (CAT2) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane 

Florence 

1988 Storm (CAT1) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane 

Andrew 

1992 Storm (CAT5) Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Opal 9/27/1995 Fl. Storm (CAT4) Gulf of Mexico Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Josephine 

1996 Storm Gulf of Mexico Weather Research Center 

2002, NOAA 2018 

Coastal Flooding 1996 Flood Parishes: Jefferson, 

Lafourche, Plaquemines, 

St. Bernard, Orleans 

Weather Research Center 

2002, NOAA 2018 

Hurricane Danny 7/17/1997 La. Storm (CAT1) Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Hermine 
9/17/1998 La. Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Frances 

 

9/9/1998 La. Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Earl 9/1/1998 La. Storm (CAT2) Gulf of Mexico Weather Research Center 

2002, NOAA 2018 

Hurricane 

Georges 

9/26/1998 La. Storm (CAT4) 
Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Drought 1998 Drought 
Southern Louisiana 

 

Weather Research Center 

2002, NOAA 2018 
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Table 1. 

Important Diversions, Storms, Floods and Draughts. 

Name Year Event Type Affected Area Source 

Tropical Storm 

Harvey 
1999 Storm Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Nine 

2000 Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Helene 

 

2000 Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Drought 2000 Drought Southern Louisiana 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Allison 
6/5/2001 La./Tx. Storm Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Barry 

2001 Storm Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Hanna 

9/14/2002 

La./Ms./Al. 

Storm Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Fay 
2002 Storm 

Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Bertha 
8/4/2002 La. Storm Gulf of Mexico Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Edouard 

2002 Storm Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Isidore 9/25/2002 La. Storm (CAT3) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane 

Claudette 

2003 Storm (CAT1) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Bill 

6/30/2003 La. Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Henri 

2003 Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Lili 9/21/2002 La. Storm (CAT4) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Erika 2003 Storm (CAT1) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Grace 

2004 Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 
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Table 1. 

Important Diversions, Storms, Floods and Draughts. 
 

Name Year Event Type Affected Area Source 

Hurricane Lili 9/21/2002 La. Storm (CAT4) Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Erika 2003 Storm (CAT1) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Grace 

2004 Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Matthew 

10/9/2004 

La./Ms. 

Storm Gulf of Mexico Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Bonnie 

 

2004 Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Ivan 9/2/2004 Al./Fl. Storm (CAT4) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Cindy 7/5/2005 La. Storm (CAT1) Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane 

Katrina 

8/23/2005 

La./Ms. 

Storm (CAT5) Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Rita 9/18/2005 

Tx./La. 

Storm (CAT5) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Coastal Flooding 2006 Flood Parishes: Jefferson, 

Lafourche, St. Tammany 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Erin 

2007 Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane 

Humberto 

9/13/2007 

Tx./La. 

Storm (CAT1) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Fay 

2008 Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Edouard 

 

8/3/2008 La. Storm Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Dolly 2008 Storm (CAT2) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Gustav 9/1/2008 La. Storm (CAT4) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Ike 9/12/2008 

Tx./La. 

Storm (CAT4) Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 
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Table 1. 

Important Diversions, Storms, Floods and Draughts. 
 

Name Year Event Type Affected Area Source 

Tropical Storm 

Claudette 
2009 Storm Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Ida 11/9/2009 

La./Ms. 

Storm (CAT2) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Coastal Flooding 

 

2009 Flood Parishes: Lafourche 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Five 

2010 Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Bonnie 

2010 Storm Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Tropical Storm 

Lee 

9/2/2011 La. Storm Gulf of Mexico 

 

Weather Research Center 

2002, NOAA 2018 

Drought Jan-Dec. 2011 Drought Louisiana NOAA 2018 

 

Drought Jan-Mar. 2012 Drought Louisiana NOAA 2018 

 

Tropical Storm 

Debby 

2012 Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Hurricane Isaac 8/28/2012 La. Storm (CAT1) Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Drought Aug-Oct. 2013 Drought Louisiana NOAA 2018 

 

Tropical Storm 

Karen 

2013 Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Coastal Flooding 2013 Flood Parishes: Orleans, St. 

Tammany 

 

Weather Research Center 

2002, NOAA 2018 

Drought Aug-Oct. 2015 Drought Louisiana NOAA 2018 

 

Tropical Storm 

Bill 

2015 Storm Gulf of Mexico 

 

 

Weather Research Center 

2002, NOAA 2018 

Coastal Flooding 2015 Flood Parishes: Jefferson, St. 

Tammany, St. Bernard, 

Orleans 

 

Weather Research Center 

2002, NOAA 2018 

Drought Oct-Dec. 2016 Drought Louisiana NOAA 2018 

 

 

“Name” indicates the diversion that was implemented or the event that took place that may have affected the HSI. 

“Year” specifies when it took place, “Event Type” specifies the category, and “Affected Area” indicates the general 

extent of impact. 
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 In addition to river water and sediment diversions, the Pearl River, located at the border of 

Louisiana and Mississippi, is a local source of fresh water (Figure 1). It delivers roughly 10,000 

cubic feet per second (cfs) into Lake Borgne, freshening both lakes Pontchartrain and Borgne 

and the area of Rigolets Pass. The Tangipahoa and Tchefuncte rivers empty into Lake 

Pontchartrain, which joins to Lake Borgne through the Chef Menteur and Rigolets passes nearby. 

The Tickfaw and Amite rivers discharge into Lake Maurepas, which flows directly into Lake 

Pontchartrain adding to the fresh water incursion (Guntenspergen 1992, McAnally & Berger 

1997). 

 

 

  

Figure 1. Area of Study 

Map displays area of study in southeastern Louisiana, its boundaries, diversions & major freshwater sources. (Sources: 

Esri, HERE, Garmin, OpenStreetMap contributors, DigitalGlobe, GeoEye, Earthstar Geographics, CNESArbus DS, 

USDA, USGS, Aerogrid, IGN, Google Maps, & the GIS User Community)  
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Historic Habitat Suitability Index Models 

Cake’s (1983) HSI model for the eastern oyster was founded on practices and guidelines used by 

U.S. Fisheries and Wildlife Services in 1981 to formulate management strategies and impact 

assessments of the Gulf of Mexico’s subtidal estuarine habitat. His HSI integrated both pre-

settlement (larval) and post-settlement (seed, spat and adult) life phase suitability indices into a 

single final value that indicated the potential of an area to support a C. virginica reef. His pre-

settlement SI had three variables: cultch coverage, mean summer salinity and mean abundance of 

living oysters (Table 2).  
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Table 2. 

 

Eastern Oyster Habitat Suitability Index (Cake 1983).  

 

Name 

 

SI Type 

 

Variable 

 

Description 

 

SI Equivalency 

 

V₁ Pre-

settlement 

HSI1/HSI2  

Cultch .Coverage 

(<50% 

unsuitable) 

Clean, solid material such as 

shells, rocks, gravel or shell 

hash 

 

0% cultch SI =0.0, 20% cultch SI =0.4, 

 40-100% cultch SI =1.0 

V₂ Pre-

settlement 

HSI1/HSI2 

Larval Settling: 

Mean Summer 

Salinity  

Ideal=18-22 Salinity 0.0SI =0.0, Salinity 5.0 SI =0.0, 

Salinity 10.0-30.0 SI =1.0, Salinity 35.0 

SI = 0.5 and Salinity 40.0 SI =0.0 

*V₃ Pre-

settlement  

HSI1/HSI2 

Sociable Settling 

Factor: Mean 

Abundance of 

Living Oysters 

Ideal abundance established 

was ≥25/m²  

0/m² SI=0.0, 10/m² SI =0.4, 20/m² SI 

=0.8,  

25-100/m² SI = 1.0 

V4 Post-

settlement  

HSI1/HSI2 

Historic Mean 

Salinity  

Ideal = 10.0-20.0  Salinity 0.0 SI =0.0, Salinity 10.0-20.0 SI 

=1.0, Salinity 25.0 SI =0.7, Salinity 35.0 

SI =0.2 and at Salinity 40.0 SI =0.0 

V5 Post-

settlement 

HSI1/HSI2  

Killing Flood 

Effect 

Continuous Salinity ≤2.0 for 

several weeks is deadly to 

50-100% of oysters 

 

Salinity 0.0-1.0 SI =0.0, Salinity 2.0 SI 

=0.5, Salinity 3.0-5.0 SI =1.0 

**V6 Post-

settlement 

HSI1/HSI2  

Mean Substrate 

Firmness 

(indicated by a 

penetrometer 

device) 

Ideal firmness is ≥1.0kg/cm² 

with <80% sand, silt or clay 

composition  

0.0 kg/cm² SI =0.0, 0.5 kg/cm² SI =0.5,  

1.0-2.0 kg/cm² SI =1.0 

***V7 Post-

settlement 

HSI2  

Mean Predator 

Abundance (S. 

haemastoma)  

≥1 drill (>4.0 cm size)/ m² as  

unacceptable  

0.5 drills/m² SI =1.0, 0.4 drills/m² SI 

=0.5,0.8 drills/m² SI =0.2, 1.2 drills/m² SI 

=0.1 and >2.0drills/m² SI =0.0 

***V8 Post-

settlement  

HSI2 

Mean Disease 

Intensity (caused 

by the protozoan 

P. marinus) 

Oysters infected at medium 

heavy/heavy levels (Quick 

1972 appraisal technique) 

will not survive 

levels 0-1 SI =1.0, level 2 SI =0.7, 

 level 3 SI =0.5, level 4 SI =0.2,  

and levels 5-6 SI =0.0 

 

*if V3=0.0 the pre-settlement SI is to be calculated as follows:(V₁ ∗ V₂)½ 

**if the substrate is composed of ≥80% sand then the composite post-settlement SI =0.0 

*** V7 and V8 included for specific applications in oyster management “Name” indicates the notation used for a specific 

variable in the formula. “SI Type” categorizes the suitability indices into either pre- or post-oyster settlement stages. 

“Variable” describes the type and significance of the variable. “Description” explains the variable and “SI Equivalency” 

represents variable as suitability index value between zero and one. 
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When Cake (1983) calculated their HSI, the common rule was that if post-settlement SI < 

pre-settlement SI then HSI = post-settlement SI, or if post-settlement SI > pre-settlement SI, the 

HSI =(post − settlement SI ∗ pre − settlement SI)½. The HSI was envisioned as a 

comparative approach to discern which of 2 or more habitats were most suitable to support a 

population of C. virginica in the subtidal estuarine areas of the northern Gulf of Mexico (Cake 

1983). 

Chatry et al. (1983) used historical data to examine the relationships relating salinity, 

spatfall and seed oyster (26-75 mm in size) production in Breton Sound (south of Terre aux 

Boeufs and east of the Mississippi River) ( Table 1). They summarized data collected within a 10 

year period (beginning in 1971) at three sites: Black Bay, Bay Gardene and California Bay. Their 

main focus was salinity for the months critical to spawning and settling (May through 

September). Weekly salinity values and spatfall were recorded (>20 seed/m² was considered the 

minimum desirable level). An analysis of the relationship between salinity and number of spat 

set indicated 20-22 as the ideal salinity. They also noted there was an inverse relationship of spat 

set and seed production such that lighter sets produced more seed oysters. When examining 

salinity and seed production they determined that ideal salinity was 12.2-17.4 however, 

inspection of data from the 8 highest oyster production years led them to conclude there was no 

single perfect salinity, but a salinity regime that was most conducive to oyster production. The 

optimal regime was intended to reflect a salinity profile most conducive to high seed oyster 

production. 
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Table 3.  

Optimal Monthly Salinity Survey. Chatry et al. (1983) simplified the ideal salinity regime 

to average ideal salinities for each month.  
 

Month Ideal Salinity 

January 16.4 

February 14.4 

March 11.6 

April 8 

May 7 

June 12.5 

July 12.7 

August 15.7 

September 17 

October 16.8 

November 16.1 

December 15.7 

 

 

“Ideal Salinity” refers to the approximate ideal salinity for a specific month during an oyster’s life cycle. 

 

“HSI models provide a standardized means for assessing habitat quality for particular 

species on a scale from 0 to 1, where 1 represents optimal habitat. Soniat & Brody (1988) tested 

the HSI created by Cake (1983) for Crassostrea virginica, which included the following 

variables: (1) percent cultch coverage, (2) mean summer salinity, (3) mean abundance of living 

oysters, (4) historic mean salinity, (5) killing flood effect, (6) mean substrate firmness, (7) mean 

predator abundance and (8) mean P. marinus infection. They decided that the third variable 

undesirably altered the HSI calculation when assessing commercially harvested reefs due to the 

artificial drop in abundance created by harvesting. They also noted that spat concentration 

showed a positive association with high salinity in spawning season and was inversely correlated 

with the harvest of the preceding season (which also bears on variable 3, thus lowering the final 

HSI). Their recommendation was to simplify the model by removing variable 3 thus eliminating 

circular dependency. In agreement with Allen et al. (1984), they found that HSI values were 
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lowest at extreme salinities and highest at intermediate salinities, and as salinity values moved 

away from optimal, seed production decreased (Soniat & Brody 1988).  

Starke et al. (2011) devised a Restoration Suitability Index (RSI) to identify areas in the 

lower Hudson River and New York Harbor suitable for C. virginica reef restoration (via 

construction). The project was motivated by a focus on substrate suitability, and reef height was 

noted to be of particular importance due to the turbidity of the river. The four main parameters 

taken into account were salinity, depth, sediment type and sedimentary environment. Several 

different weights were applied when testing calculations of the salinity component of the RSI to 

optimize results minimize errors and investigate multiple possible scenarios. The explored 

scenarios were: an Analytic Hierarchy Process/ mean salinity suitability, an even weighted 

scenario/ mean salinity suitability, salinity dominant/ mean salinity suitability, Analytic 

Hierarchy Process/mean minus uncertainty in salinity suitability, an even weighted scenario/ 

mean minus uncertainty in salinity suitability, and salinity dominant/ mean minus uncertainty in 

salinity suitability.  The results showed that the salinity dominated weighted scenario was the 

most conservative and the best choice for determining placement of restorative projects. 

Pollack et al. (2012) devised a Restoration Suitability Index model for C. virginica in the 

Mission-Aransas estuary on the coast of Texas (Table 4). It is similar to the RSI of Starke et al. 

(2011), by including salinity and depth as variables, but it added effects of temperature, turbidity, 

and dissolved oxygen. Areas with the lowest standard deviations from the normalized variable 

measurement values were assigned higher SI values as they indicated a more stable environment 

with less extreme variations. Infection was weighted by averaging the ranked infections (5 point 

modified version of the Mackin Scale). Higher values were assigned to higher turbidity, lower 

temperatures with lower standard deviations, lower incidences of low dissolved oxygen, and 
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moderate salinities (15 being ideal). The RSI parameters were weighted where standard 

deviations were set at a weight of 1, all normalized environmental variables to 2 and salinity to 4. 

If any parameter had a suitability index of zero then the RSI was also equal to zero. 𝑅𝑆𝐼 =

(∏ 𝑁𝐸𝑉𝑖
𝑤𝑖)¹𝑛

𝑖=1
/n wi is the relative weight of importance of the normalized environmental 

variables (NEV). It was noted that areas with a high RSI were often located on live oyster reefs, 

and areas with the lowest RSI were in the deepest areas of the study site. 
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Table 4.  

Restoration Suitability Index (Pollack et al. 2012).  

 

Variable Type Value SI Equivalency 

Salinity 10  

15  

28 

SI = 0.75 

SI = 1.0 

SI = 0.0 

Salinity Standard Deviation 5 

10  

SI = 1.0 

SI = 0.0 

Frequency of Dissolved Oxygen < 4 

mg/l. 

0 

7 

SI = 1.0 

SI = 0.925 

Frequency of Dissolved Oxygen < 4 

mg/l. Standard Deviation 

1 to 2 

0.5 to 1 and 2 to 3 

<0.5 and >3 

SI = 1.0 

SI = 0.5 

SI = 0.0 

Turbidity 10 NTU 

59 NTU 

SI = 0.0 

SI = 1.0 

Turbidity Standard Deviation 10 

75 

SI = 1.0 

SI = 0.0 

Temperature 22 ⁰C 

25.8 ⁰C 

SI = 0.0 

SI = 1.0 

Temperature Standard Deviation 4.75 

6.5 

SI = 1.0 

SI = 0.0 

Depth 1-2 m. 

0.5 – 1 m. and 2-3 m. 

<0.5 and >3 m. 

SI = 1 

SI = 0.5 

SI = 0.0 

 

“Variable” refers to the type of data used to calculate the RSI. “Value” indicates salinity measure of the 

corresponding variable type, and “SI Equivalency” is how each value translates on a scale from 0.0 – 1.0. All 

variable values were normalized with the exception of depth. 

 

The appendix to the 2012 Coastal Master Plan included a HSI created by Dr. Tom Soniat for the 

Lower Breton Sound Diversion as a management tool to evaluate the effects of particular 

restoration plans on existing oyster reefs (Soniat 2012; Table 5). This HSI was calculated 

without weighting any of the component parameters as follows: (𝑉1 ∗ 𝑉2 ∗ 𝑉3 ∗ 𝑉4 ∗ 𝑉5)⅕ and 

returned a HSI value for a single year. The limitations of this modified model were its failure to 
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address temperature effects as well as possible benefits from recruitment from other reefs. A 

slightly adjusted version of his 2012 HSI was published the following year (Soniat et al. 2013; 

Table 5). 

Table 5. 

Revised Eastern Oyster Habitat Suitability Index. Comparison of Soniat 2012 & Soniat et 

al. 2013 HSI models. 

 

Variable Variable  Type Value 

2012 SI 

Equivalency 

2013 SI 

Equivalency 

V₁ Cultch Coverage (<50% unsuitable) 0% cultch coverage SI =0.0 SI =0.0 

  10% SI = 0.4 SI = 0.4 

  20% SI = 0.6 SI = 0.6 

  30% SI = 0.8 SI = 0.8 

  40% SI = 0.9 SI = 0.9 

  50-100% cultch coverage SI =1.0 SI =1.0 

 

V₂ 

Mean Spawning Salinity (May-

Sept) Salinity 0-5 and 40 SI =0.0 SI =0.0 

  Salinity 35  SI =0.1 SI =0.1 

  Salinity 10 and 30  SI =0.3 SI =0.3 

  Salinity 15  SI =0.6 SI =0.65 

  Salinity 18-22  SI =1.0 SI =1.0 

 

V₃ Minimum Annual Salinity Salinity 0-2  SI =0.0 SI =0.0 

 (minimum mean monthly Salinity 4  SI =0.05 SI =0.05 

 salinity within a year) Salinity 6  SI = 0.5 SI = 0.5 

  Salinity 8-10  SI = 1.0 SI = 1.0 

 

V₄ Mean Annual Salinity Salinity 0-5 and 40  SI =0.0 SI =0.0 

  Salinity 35  SI = 0.05 SI = 0.05 

  Salinity 30  SI = 0.1 SI = 0.1 

  Salinity 25  SI = 0.3 SI = 0.25 

  Salinity 20  SI = 0.6 SI = 0.6 

  Salinity 10-15  SI = 1.0 SI = 1.0 

 

V₅ 

 

 

Percent Land 

 

Gradient from 0%-100% 

 

SI =1.0-0.0 

(correspondingly) 

 

SI =1.0-0.0 

(correspondingly) 

 

 

 “Variable” indicates the variable’s abbreviation in the HSI formula. “Variable Type” is a description of the variable 

used to calculate the HSI while “Value” is a quantification of each variable type. “SI Equivalency” translates the 

values on a scale from 0.0 – 1.0 to calculate the HSI for the year indicated. 
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Swannack et al. (2014) revised the models of Cake (1983), Soniat & Brody (1988), Pollack 

(2012), and Soniat (2012) into a new RSI to characterize and compare the suitability of both the 

Chesapeake Bay and Western Mississippi Sound regions. The variables included were percent 

cultch, mean spawning season salinity, mean annual salinity and minimum annual salinity, and 

did not include temperature effects. All relationships were identical to Soniat (2012) except for 

percent cultch which was defined with the following equation:     SI% Cultch = 0.01 x (% Cultch) 

which produced a more conservative SI than the relationship used in Soniat’s 2012 HSI, which 

designated >50% cultch coverage at a SI value of 1. The same relationships were used to define 

SI values in both geographical locations. The RSI was then calculated as the unweighted 

geometric mean of the variables categorized as low for values 0 – 0.25, low/medium for 0.25 – 

0.55, medium/high for 0.55 – 0.85, and high for 0.85 – 1.0 and mapped using GIS (Swannack 

2014).  

Preau et al. (2016) compared the habitat suitability models of Chatry et al. (1983) and 

Soniat (2012), to evaluate their usefulness in the management and restoration of reefs east of the 

Mississippi River.  They averaged bi-weekly surface salinity values from 2013-2015, and 

generated maps to visualize the results of the models for comparison.  Chatry et al. (1983) 

focused their model on seed oyster production in Breton Sound, taking into account the 

relationships relating salinity, set and seed production. The data was derived directly from live 

oyster reefs that were considered to be in an ideal production environment for seed oysters 

(Chatry et al. 1983). Soniat (2012) had five suitability indices that characterized the effects of 

salinity on spawning and production, and expanded to include the percent land variable, and an 

additional substrate factor that required reefs to be self-sustaining. Overall the outcomes of both 

models were in accord displaying similar unsuitable HSI values in Lakes Pontchartrain and 
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Maurepas however, there were some differences in the areas more open to the Gulf of Mexico. 

Although regions considered optimal by both models overlap in all three years, the Soniat (2012) 

model consistently showed larger areas of the top three salinities and smaller unsuitable areas, 

with the largest differences at the extremes. Chatry et al. (1983) placed optimal areas higher in 

the estuary whereas the Soniat (2012) results were further towards the Gulf of Mexico. Noting 

that hypoxia (not included in the model) can be an important factor to oyster survival, model 

representations were overlaid onto maps of hypoxic areas revealing areas where the model’s 

predictions might be less effective. Historic reefs and U.S. Army Core of Engineers target areas 

for oyster reef restoration projects were also added to the map to enable better educated decisions 

for management (Preau et al. 2016). 

Present Work 

Habitat Suitability Index models have potential as a management tool to determine optimal 

locations for oyster cultivation as freshwater diversions are implemented. This work uses 

historical salinity data to visualize legacy HSI conditions prior to proposed freshwater diversions 

and provides a framework for predicting the location of suitable habitat due to their 

implementation. The purpose of the present work is to expand on the Soniat et al. 2013 model.   

The focus area for the application of our habitat suitability model is the southern coastal 

estuarine area of Louisiana that is crucial to Louisiana’s oyster industry – specifically the 

Barataria and Pontchartrain Basins (Roberts et al. 1992, Soniat et al. 2013). Legacy HSI 

visualizations show annual fluctuations in the distribution of zones suitable for cultivation of 

Crassostrea virginica oysters subject to freshwater and sediment diversions. Hydrographic 

models of the effects of future diversions on the distribution of salinity, coupled with the HSI, 

enable predictions of suitable locations for oyster cultivation post-diversion. 
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Methods 

Study Area 

The study area includes the southern coastal estuarine regions in the deltaic plains of 

Louisiana bounded by Bayou Lafourche to the west, and Pearl River and Mississippi Sound to 

the east. This shallow estuary is a wetland that contains a network of lakes, bayous and canals 

varying along a gradient from inland freshwater to saline offshore, governed by fresh riverine 

input, diversions, and the saline waters of the Gulf of Mexico (Chatry et al 1983, Lopez et al. 

2003, LaPeyre et al 2015) . Frequent flooding and subsidence are converting the wetlands to 

open water and storms and diversions contribute to the dynamic salinity environment (Lopez et 

al. 2003, LaPeyre et al. 2015).  Multiple diversions have been implemented to reduce wetland 

loss and enhance production in the oyster industry (Roberts et al. 1992, Soniat et al. 2013). The 

study incorporates both the current and past oyster reefs of Pontchartrain and Barataria Basins, 

and extends into the higher salinity waters of Chandeleur Sound that may be appropriate for 

supporting oyster farming should diversions be utilized (Sallenger 1997, Soniat et al. 2013, 

LDWF 2016).  

Data Collection and Treatments 

Over forty years of Salinity data was obtained from five sources: United States Geological 

Survey (USGS), Lake Pontchartrain Basin Foundation (LPBF), Louisiana Department of 

Wildlife and Fisheries (LDWF), National Oceanic and Atmospheric Administration (NOAA), 

and Coastwide Reference Monitoring System (CRMS) (Figures 6-10). All data were checked for 

errors, and uniformly formatted in Notepad++ and Microsoft Excel. Salinity data locations not 

taken in NAD1983 were converted using an online converter to the corresponding NAD1983 

location for continuity when mapping (V-Datum 2018). Real-time data (high frequency of 

measurements taken in one location) was averaged to a weekly value for each location, then 
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monthly averages. An algorithm was created to incorporate the equally weighted effects of 

temperature and salinity on spawning/reproduction, physiological ability/growth and mortality. 

Finally, all data were loaded into an online database where the algorithm was applied to derive 

the annual HSI value for each location. Streamflow data was procured from USGS for gages on 

tributaries to the study area to serve as a representation of fresh influx into the basins (USGS 

2018). Oyster Stock Assessment data was provided by LDWF, and only years (2012-2016), and 

reefs with available data were analyzed using a generalized linear model statistical approach 

(Tables 6-8). Oyster abundance was sampled at 58 stations, (9 in Barataria Basin, 32 in Breton 

Sound, and 17 in the Biloxi Marsh wetlands (east of the MRGO between Chandeleur Sound and 

Lake Borgne) and classed by size (Table 9). Oyster stock assessment stations in the Biloxi Marsh 

wetlands included sites at Morgan Harbor, East and West Karako, Millenium and Cabbage 

Reefs, Shell Point, Grassy, Petit, Grand Banks, Johnson and Turkey Bayous, 3-Mile and the 3-

Mile Pass 2013 Cultch Plant, Round Island 2011 Cultch Plant, Drum Bay and the Drum Bay 

2013 Cultch Plant (Table 9, Figure 64). Oyster stock assessment stations in Breton Sound 

(between MRGO and the Mississippi River) included sites at Jessie, Wreck, Sunrise Point, Black 

Bay, North and South Black Bay, California Bay, North California Bay, California Bay 2011 

Cultch Plant, Bay Gardene, East Bay Gardene, Telegraph, North and South Lake Fortuna, Lake 

Fortune 2012 Cultch Plant, Horseshoe and Battledore Reefs, Mangrove, Curfew, East and West 

Pelican, East Stone, Bays Lone and Crabe, East and West Bay Crabe, Lonesome and North 

Lonesome, Snake, Elephant Pass, and Bayou Lost (Table 9, Figure 64).  Oyster stock assessment 

stations in Barataria Bay (between Terrebonne Bay and the Mississippi River) included sites 

located in lower, middle and upper Hackberry Bay, Hackberry 2014 Cultch Plant,  2004 North 
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and South Hackberry Cultch Plants, 2008 Cultch Plant, 2012 Cultch Plant, and the 2004 

Barataria Bay Cultch Plant (Figure 64). 

HSI and SI Formulations  

The present HSI is calculated as a geometric mean of unweighted values derived from the 

relationship between chosen variables and a Suitability Index (SI). Use of the geometric (rather 

than arithmetic) mean of suitability indices results in a HSI of 0.0 if any SI=0.  Both HSI, and SI 

vary from 0 (unsuitable) to 1 (ideal) (Figures 2-5). The environmental factors of focus in the 

development of this HSI were temperature and salinity, however, month was used as a proxy for 

temperature. The temperature dependency is manifested in SI3 (minimum salinity) (Lowe et al. 

2017).  

Average Annual Salinity 

Average annual mean salinity incorporates monthly salinity values for a full year as a 

historical component, and indicates the optimal salinity range where oysters may exist however, 

it does not guarantee their presence (Soniat et al. 2013). The inability of the gastropod predator 

Stramonita haemastoma and the parasite P. marinus to survive in salinities lower than 15 was a 

large factor in assigning suitability values as it represents partial mortality due to predators and 

disease (Craig et al. 1989, Soniat 1996). Salinity data from U.S.G.S., L.P.B.F., L.D.W.F., 

N.O.A.A., and C.R.M.S. was averaged into a monthly value for each sampling location, and then 

into an annual value. The relationship was: Salinities of 0.0, 5.0, 40.0, and above all had a SI 

value of zero. Salinities of 10.0 – 15.0 are SI of 1.0, 20.0 was SI of 0.6, 25.0 was 0.25, 30.0 was 

0.1 and 35 was S.I of 0.05. 
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Figure 2. Suitability Index 1 - Average Annual Salinity 

 

 

 

 

Mean Spawning Season Salinity 

 

The warmer months of April-September are when spawning takes place for Louisiana’s eastern 

oysters (Soniat et al. 2006, Soniat 2012, Soniat et al. 2013). The average spawning salinity 

suitability index differs from the annual mean salinity as it addresses the need for higher 

salinities that ensure successful spawning and larval survival. The relationship was: Salinities of 

0.0 and 5.0 had a SI value of zero. Salinity of 10.0 had a SI of 0.3, 15.0 was SI of 0.65, 18.0-22.0 

were 1.0, and 30.0 was SI of 0.3. 
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Figure 3. Suitability Index 2 - Mean Spawning Season Salinity 

 

 

Minimum Salinity 

 

The minimum salinity suitability index was the minimum mean salinity in any month 

during a year’s time. It accounted for the synergistic effects of temperature and salinity on the 

physiology of the oysters and delineated the impacts of killing floods (Soniat et al. 2013). The 

relationships were: Warm months: Salinities of 0.0, 1.0, 2.0, 20.0, and above all had a SI value of 

zero. Salinity of 5.0 was SI of 0.1, 8 was SI of 1.0 and 15 was S.I of 0.2; Cool Months: Salinities 

of 0.0, 1.0, 20.0, and above all had a SI value of zero. Salinity of 5.0 was SI of 0.1, 8 was SI of 

1.0 and 15 was S.I of 0.2.  First the lowest mean monthly salinity for each year was identified. 

Month was used as a proxy for temperature; warm month and cold month relationships relating 

to minimum salinity, and minimum suitability index were developed and applied according to 

which month was being calculated. 
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Figure 4. Suitability Index 3 – Minimum Average Salinity - Warm Months: April-September 

 

 

 

 
Figure 5. Suitability Index 3 – Minimum Average Salinity - Cool Months: October-March 

 

 

                Data capture was automated, and the HSI was calculated as an annual value for each 

sampling location, and a map was created for each year using ArcGIS ArcMap v. 10.3.1 (ESRI 

2007) to visualize an overlay of the HSI onto a map of southern Louisiana. Color-coded 

polygons and iso-lines were created by interpolating HSI values using nearest neighbor for each 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Su
it

ab
ili

ty
 I

n
d

e
x

Salinity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Su
it

ab
ili

ty
 I

n
d

e
x

Salinity



 

31 

 

HSI. Finally, output from the models were uploaded on the Oyster Sentinel website 

(www.oystersentinel.org).  

GIS  

           All mapping was done in ArcGIS ArcMap v. 10.3.1. (ESRI 2007) Water, and land maps 

were imported from the U.S. Census Bureau (LSU 2008, U.S. Census Bureau Tiger 2017a & 

2017b). The 2008 Southeast Louisiana Parishes file was downloaded from Louisiana Department 

of Transportation and Development (Parker 2017). An additional Lake Pontchartrain map was 

imported from Esri online. Water maps were merged to create one continuous layer 

encompassing the waters of coastal, Southeastern Louisiana. The erase tool was used on the land 

map (which included waters) to remove the water and was then labeled “Land” for the sake of 

simplicity. All maps and data were in the NAD 1983 datum and coordinate system. The HSI data 

from January of 1967 to June 30th of 2017 was separated by year and basin (by selection on the 

GIS attribute table), and exported onto the map.  The XY data were then plotted and the events 

exported as a shape files. The shape files were then clipped to the parish layer to remove offshore 

data points that could skew the final product and cause misrepresentation of suitable habitat. A 

triangular irregular network (TIN) layer was created from each clipped layer (3D-Analyst) 

interpolating the HSI values using nearest neighbor technique, and a color ramped raster (high to 

low values) was created from the TIN layer (3-D Analyst). Finally, contour lines were assigned 

to each 0.1 interval across the raster (Contour – Spatial Analyst) and labeled to display the HSI 

across the raster gradient.  

Statistical Analyses 

The oyster abundance dataset included repeated measures with unequal sample sizes, 

nested values, and non-normal distributions that did not respond to transformations hence, a 

http://www.oystersentinel.org/
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generalized linear model was the best course for analysis.  A generalized linear model was 

applied to each of three size class (spat, seed and sack) datasets in R using a quasi-Poisson 

distribution setting.  The models were then reduced to minimum adequate models to explain 

variance in the response variable (oyster abundance). Factors included in the models were reef 

size, cultch quality, year, habitat suitability index (HSI), and the interactions between the 

variables. Reef size indicated the influence of gregariousness on spat set (Soniat & Brody 1988). 

Cultch quality was designated by the amount of brown (not buried by mud or sand) cultch 

present indicated by a value of 1 (high suitability =1000 g/m² and above) or zero (assigned to 

anything below 1000 g/m²) (T. Soniat, personal communication). Year was included to account 

for stochastic events such as storms, droughts, floods. HSI accounted for the effects of 

temperature and salinity during oyster spawning, setting and growth (Lowe et al. 2017). 

Estimates are the coefficients of the predictors each with a significance value of effect on the 

response variable (abundance). Intercept values represent the grand mean for each variable in the 

model. Deviance is a measure of the unexplained variation after fitting the model and serves as a 

measure of goodness of fit (lower values indicate a better fit). Null deviance represents how well 

the response is predicted by the intercept alone. The dispersion parameter simplifies the 

relationship between the variance and the mean to a single number indicating how many times 

larger the variance is than the mean. A dispersion parameter below 1 indicates under-dispersion, 

and above 1 indicates over-dispersion (Lillis 2008).  
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Results 

GIS Map Analysis 

Heat maps generated from 1967-2016 show the HSI profile for each particular year 

however, statistical analysis was limited to years for which cultch and oyster stock assessment 

data were available (2012-2016). Upper Lake Borgne, near the Rigolets and Lake Pontchartrain 

outlet (Figure 1), displayed consistent HSI values below 0.5 (Figures 14-56, 58- 61, & 63) with 

the exception of tiny hot spots in 2015 (Figure 62) and intermediate values (HSI 0.5-0.7) in the 

year 2000 (Figure 57). There was no data for 1970 (Figure 17). The area of Lake Borgne nearest 

to the Caernarvon Diversion had low HSI values (< 0.5) from 1969 until the 1980s (Figures 16-

27), and again in 1984 (Figure 31), and from 1999 (Figure 46), and 2006 (Figure 53).  HSI 

values were low but approached intermediate in 1983 (Figure 30), 1987 (Figure 34), 1988 

including a small hot spot (Figure 35), 1990-1998 (Figures 37-45), 2001-2005 (Figures 48-52), 

and 2007-2016 (Figures 54-63).  The HSI was intermediate in 1967-1968 (Figures 14-15), 1981-

1982 (Figures 28-29), 1985-1986 (Figures 32-33), 1989 (Figure 36) and 2000 (Figure 47). 

The Biloxi Marsh wetlands had overall low HSI values in 1973 (Figure 20), 1976-1977 

(Figures 23-24), 1981 (Figure 28), 1983 (Figure 30), 1992 (Figure 39), 1997-1998 (Figures 44-

45), and low with hot spots in 1972 (Figure 19), 1974 (Figure 21), and 1979 (Figure 26). The 

years 1969 (Figure 16), 1988 (Figure 35), 1990 (Figure 37), 2010-2011 (Figures 47-48), 2013 

(Figure 50) and 2016 (Figure 53) had a low to intermediate HSI gradient, with some years 

having hot spots including 1975-1977 (Figures 22-24), 1984 (Figure  31), 1987 (Figure 34), and 

1999 (Figure 46). The years 1968 (Figure 15), 1980 (Figure 27), 1991 (Figure 38), 2000 (Figure 

47), 2004 (Figure 51) and 2012 (Figure 59) had predominantly intermediate HSI values, while 

1967 (Figure 14), 1989 (Figure 36), 1993 (Figure 40), 1996 (Figure 43), 2001-2002 (Figures 48-
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49), 2005 (Figure 52), 2007 (Figure 54), 2009 (Figure 56) and 2015 (Figure 62) approached 

higher values. High HSI values (> 0.7) were observed in 1982 (Figure 29), and 1984-1986 

(Figures 31-33). There was a low to high gradient in 1970 (Figure 17), 1994-1995 (Figures 41-

42), 2003 (Figure 50), 2006 (Figure 53), 2008 (Figure 55), and 2014 (Figure 61). No data was 

available for 1970 and 1971 (Figures 17-18). 

The region of Breton Sound immediately impacted by White’s Ditch Diversion and the 

Violet Siphon were dominated by low HSI values in 1967 (Figure 14), 1973 (Figure 20), 1975 

(Figure 22), 1978-1979 (Figures 25-26), 1990-1999 (Figures 37-46), 2002-2005 (Figures 50-53), 

and 2007-2016 (Figures 55-63).  Intermediate HSI values were only prevalent in 1968 (Figure 

15) and 1982 (Figure 29). There was a weak gradient from low to intermediate HSI approaching 

the Gulf of Mexico in 1967 (Figure 14), 1969 (Figure 16), 1974 (Figure 21), 1980-1981 (Figures 

27-28), 1988-1989 (Figures 34-36), 2000-2001 (Figures 47-48) and 2006 (Figure 53), and a 

similar pattern of low to high HSI in 1970-1972 (Figures 17-19), 1976-1977 (Figures 23-24), and 

1984-1987 (Figures 31-34).  

The region of Breton Sound affected by the Bohemia Spillway and Mardi Gras Pass 

principally displayed low HSI values near the Mississippi River rising with distance from shore 

for the years 1974-1975 (Figures 21-22), 1978 (Figure 25), 1982 (Figure 29), 1984 (Figure 31), 

1989-1990 (Figures 36-37), 1997 (Figure 44), 1999-2000 (Figures 46-47), 2006 (Figure 53), and 

2011-2015 (Figures 58-62), and was mainly low in 1979 (Figure 26), 1983 (Figure 30), 1991 

(Figure 38), 1993-1994 (Figures 40-41), 1998 (Figure  45), and 2010 (Figure 57). Intermediate 

HSI values were seen in 1970 (Figure 17), 1972 (Figure 19), 1976-1977 (Figures 23-24), 1980-

1981 (Figures 27-28), and 1992 (Figure 39). The only years showing high HSI values were 

1967-1969 (Figures 14-16), 1971 (Figure 18), 1973 (Figure 20), and 1985-1988 (Figures 32-35). 
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No data was available near the outfall areas for the years 1995-1996 (Figures 42-43), 2001-2005 

(Figures 48-52), 2007-2009 (Figures 54-56) and 2016 (Figure 63). 

The outfall areas of Bayou Lamoque and the Ostrica Locks displayed low HSI values in 

1982-1983 (Figures 29-30) and in 2010 (Figure  57), and a low to intermediate gradient in 1975 

(Figure 22), 1979-1980 (Figures 26-27), 1984 (Figure 31), 1994 (Figure 41), 1997-2000 (Figures 

44-47), 2005-2006 (Figures 52-53), and from 2011-2016 (Figures 58-63). Intermediate values 

were observed in 1967-1969 (Figures 14-16), 1972 (Figure19), and 1981 (Figure 28), with a 

rising gradient to higher values in 1971 (Figure 18), 1974 (Figure 21), 1976-1978 (Figures 23-

25), and 1992 (Figure 39). 1973 (Figure 20) was the only year with a high HSI, and there was no 

data for 1970 (Figure 17). The nearest available values to the region adjacent to the outfall area 

were intermediate for 2009 (Figure 56), with a rising gradient in 1985 (Figure 32), 1990 

(Figure37), 1995-1996 (Figures 42-43), 2001 (Figure 48), and 2003-2004 (Figures 50-51). The 

years 1991 (Figure 38), 1993 (Figure 40), 2002 (Figure 49), and 2008 (Figure 55), saw a reversal 

in this trend, with a decline in HSI away from the Mississippi River. The region nearest to the 

Channel Armor Gap Crevasse and the structures at Fort St. Philip (including Little Coquille 

Diversion, Delta Management) displayed low HSI values for 1968 (Figure 15), 1977 (Figure  

24), 1979 (Figure  26), 1982 (Figure 29), and 2010 (Figure 57), with a rising gradient near the 

diversions in 1974-1975 (Figures 21-22), 1978 (Figure 25), 1980 (Figure 27), 1983-1984 

(Figures 30-31), 1994 (Figure 41), 1997-2000 (Figures 44-47), 2006 (Figure 54), and 2011-2016 

(Figures 58-63). Intermediate values were observed in 1967 (Figure 14), 1969 (Figure 16), 1972 

(Figure 19), 1976 (Figure 23), 1981 (Figure 28) and 1992 (Figure 39), with an increasing 

gradient to higher values in 1971 (Figure 18). 1973 (Figure 20) was the only year with an overall 

high HSI, and there was no data available for 1970 (Figure 17), 1985 (Figure 32), 1987-1991 
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(Figures 34-38), 1993 (Figure 40), 1995-1996 (Figures 42-43), 2001-2005 (Figures 48-52), 

2007-2009 (Figures 54-56), and 1986 (Figure 33) (although nearby areas were approaching 

intermediate in 1986).  

West of the Mississippi River, the general trend of low HSI values inland increased near 

the mouth of Barataria Basin, and declined nearer to the region of the West Bay sediment 

diversion. The region nearest the West Pointe a la Hache siphon had low HSI values in 1992-

1999 (Figures 39-46),  2002-2005 (Figures 49-52), and 2007-2016 (Figures 54-63). Intermediate 

and high values were observed in 2000-2001 (Figures 47-48) and 2006 (Figure 53). There was 

no data available for 1967-1981 (Figures 14-28). The region of the Barataria Basin from Grande 

Isle to Bay Long was only dominated by low HSI values in 1976 (Figure 23), 1979 (Figure 26), 

and 1981 (Figure 28). Predominantly intermediate values were observed in 1968 (Figure 15), 

1973-1975 (Figures 20-22), 1980 (Figure 27), 1982-1987 (Figures 29-34), 1991-1992 (Figures 

38-39), 1994 (Figure 41), 1998-1999 (Figures 45-46), 2006-2007 (Figures 53-54), 2012-2013 

(Figures 59-60), and 2016 (Figure 63). High HSI was seen in 1967 (Figure 14), 1970 (Figure 17), 

1990 (Figure 37), 1995 (Figure 42), 1997 (Figure 44), 2001 (Figure 48), and 2010 (Figure 57). 

There was a gradient from high in the east declining westward across Grande Isle in 1971-1972 

(Figures 18-19), and 2000 (Figure 47), and the opposite trend was observed in 1996 (Figure 43), 

2002-2005 (Figures 49-52), 2008-2009 (Figures 55-56), and 2011 (Figure 58) and 2014-2015 

(Figures 61-62).  A variety of spotty values were seen in 1977-1978 (Figures 24-25), 1988-1989 

(Figures 35-36), and in 1993 (Figure 40). The area immediately impacted by the West Bay 

sediment diversion showed low HSI values in 2010-2016 (Figures 57-63). While no other data 

was available for wetlands closest to the diversion, the region to the west had low values in 1998 

(Figure 45), 2005-2007 (Figures 52-54) and 2009 (Figure 56), intermediate values in 2002-2004 
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(Figures 49-51), high in 1994 (Figure 41), 1999-2001 (Figures 46-48). No data was available for 

the West Bay sediment diversion region in 1967-1993 (Figures 14-40), 1995-1997 (Figures 42-

44), and 2008 (Figure 55). 

Statistical Analyses 

Shapiro testing on spat, seed and sack abundance returned low p values (all <.001) and low W 

values (<0.99) indicating that none of the data was normally distributed (Tables 6-8).  Tukey’s 

transformation did not resolve the problem (Tables 6-8). All dispersion parameters were larger 

than one indicating over-dispersion of errors. A generalized linear model (GLM) for spat 

abundance resulted in a minimum adequate model that included: year (p<0.001), cultch quality 

(p<0.001), cultch quality x year (p<0.001), HSI (p<0.01), the interactions of HSI x cultch quality 

(p<0.01), HSI x reef size (p<0.01), HSI x year (p<0.01), HSI x cultch quality x year (p<0.01), 

and HSI x reef size x year (p<0.01), reef size (p<0.05), the interactions between reef size x cultch 

quality (p<0.05) and the interactions of reef size x year (p<0.05) (Table 6).  The GLM for seed 

abundance resulted in a minimum adequate model that included: HSI (p<0.001), year (p<0.001), 

interactions between HSI x cultch quality (p<0.001) cultch quality (p<0.01), the interaction 

between cultch quality x year (p<0.01), reef size (p<0.05), the interaction between HSI x reef 

size (p<0.05), reef size x cultch quality (p<0.05), and HSI x reef size x cultch quality (p<0.05) 

(Table 7). The GLM for sack abundance resulted in a minimum adequate model that included: 

HSI (p<0.001), cultch (p<0.01), interactions between HSI x reef size (p<0.01) (Table 8). Reef 

size was not significant, but because its interactions with other variables were important it was 

kept in the model. 

 

  



 

38 

 

Table 6. 

Spat Abundance: Statistical testing results of step reduction procedures run on the full generalized 
linear model for spat abundance resulted in a minimum adequate model that explained the 

variation in the sample set. 

Variables Estimate Standard Error t value Significance Pr(>|t|) Significance Code 

(Intercept) 3.183e⁺⁰³ 9.508e⁺⁰² 3.347 8.660e-⁰⁴ *** 

HSI -7.303e⁺⁰³ 2.791e⁺⁰³ -2.616 9.112e-⁰³ ** 

Reef Size 1.373e⁻⁰⁴ 6.043e⁻⁰⁵ 2.272 2.342e-⁰² * 

Cultch Quality -3.518e⁺⁰³ 9.665e⁺⁰² -3.640 2.960e-⁰⁴ *** 

Year -1.580e-⁰⁰ 4.724e-⁰¹ -3.344 8.770e-⁰⁴ *** 

HSI x Reef Size -3.867e⁻⁰⁴ 1.434e⁻⁰⁴ -2.697 7.191e-⁰³ ** 

HSI x Cultch Quality 9.227e⁺⁰³ 2.811e⁺⁰³ 3.282 1.089e-⁰³ ** 

HSI x Year 3.625e-⁰⁰ 1.386e-⁰⁰ 2.615 9.150e-⁰³ ** 

Reef Size x Cultch Quality 1.365e⁻⁰⁷ 6.781e⁻⁰⁸ 2.013 4.454e-⁰² * 

Reef Size x Year -6.825e⁻⁰⁸ 3.002e⁻⁰⁸ -2.274 2.332e-⁰² * 

Cultch Quality x Year 1.746e-⁰⁰ 4.801e-⁰¹ 3.637 2.990e-⁰⁴ *** 

HSI x Cultch Quality x 

Year 

-4.581e⁻⁰⁰ 1.396e⁻⁰⁰ -3.281 1.095e-⁰³ ** 

HSI x Reef Size x Year 1.920e⁻⁰⁷ 7.121e⁻⁰⁸ 2.696 7.205e-⁰³ ** 

(Dispersion parameter for quasipoisson family taken to be 8.34903)                  Number of Fisher Scoring iterations: 6 

Null deviance: 3475.1 on 616 degrees of freedom                       Residual deviance: 2977.9 on 604 degrees of freedom 

Shapiro-Wilk Normality Test Post-Tukey’s Transformation (^0.325) Shapiro-Wilk Normality Test 

W = 0.55115, p-value < 2.2e-16 W = 0.90138, p-value < 2.2e-16 

glm formula = (abundance ~ hsi + reef size + cultch + year + hsi:reefsize +  hsi:cultch + reefsize:cultch + hsi: year +  

reefsize:year + cultch:year + hsi: reef size: year + hsi: cultch: year, family = quasipoisson) 

 

Deviance Residuals:  

      Min               1Q               Median                   3Q                   Max   

-3.4562        -1.7035               -0.9579             0.3311             12.6540 

 

“Variables” indicate the data types fed into the model. ”Significance” is the specific probability of how frequently the 

variable would be found by chance (follows Student’s t distribution) and “Significance Code”    represents significance 

level as follows: “ns” is not significant, “***” is to 0.001, “**” is to 0.01, “*” is to 0.05. 
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Table 7. 

Seed Abundance: Statistical testing results of step reduction procedures run on the full  

generalized linear model for seed abundance resulted in a minimum adequate model  

that explained the variation in the sample set. 

Variables Estimate Standard Error t value Significance Pr(>|t|) Significance Code 

(Intercept) 1.443e⁺⁰³ 4.132e⁺⁰² 3.493 5.120e-⁰⁴ *** 

HSI -6.938e⁺⁰⁰ 1.967e⁺⁰⁰ -3.527 4.520e⁻⁰⁴ *** 

Reef Size -5.465e-⁰⁷ 2.285e-⁰⁷ -2.392 1.705e-⁰² * 

Cultch Quality -3.518e⁺⁰³ 9.665e⁺⁰² -3.640 2.960e-⁰⁴ *** 

Year -1.285e⁺⁰³ 4.269e⁺⁰² -3.010 2.723e-⁰³ ** 

HSI x Reef Size 1.293e-⁰⁶ 5.769e-⁰⁷ 2.241 2.542e⁻⁰² * 

HSI x Cultch Quality 7.086e⁺⁰⁰ 2.013e⁺⁰⁰ 3.521 4.630e-⁰⁴ *** 

Reef Size x Cultch Quality 5.281e-⁰⁷ 2.352e-⁰⁷ 2.245 2.511e-⁰² * 

HSI x Year 3.625e⁺⁰⁰ 1.386e⁺⁰⁰ 2.615 9.150e-⁰³ ** 

Cultch Quality x Year 6.372 e-⁰¹ 2.120e-⁰¹ 3.006 2.758e-⁰³ ** 

HSI x Reef Size x Cultch 

Quality 

-1.357e-⁰⁶ 5.870e-⁰⁷ -2.311 2.114e-⁰² * 

(Dispersion parameter for quasipoisson family taken to be 8.595051) 

Null deviance: 3475.1  on 616 degrees of freedom 

Residual deviance: 3475.1  on 616 degrees of freedom 

Number of Fisher Scoring iterations: 6 

 

Shapiro-Wilk Normality Test Post-Tukey’s Transformation (^0.325) Shapiro-Wilk Normality Test 

W = 0.43509, p-value < 2.2e-16 W = 0.7862, p-value < 2.2e-16 

 

Deviance Residuals:  

      Min             1Q          Median           3Q           Max   

-3.1523           -1.6848      -0.9638       0.3294      12.0027 

    

“Variables” indicate the data types fed into the model. ”Significance” is the specific probability of how frequently 

the variable would be found by chance (follows Student’s t distribution) and “Significance Code”    represents 

significance level as follows: “ns” is not significant, “***” is to 0.001, “**” is to 0.01, “*” is to 0.05. 
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Table 8. 

Sack Abundance: Statistical testing results of step reduction procedures run on the full  

generalized linear model for sack abundance resulted in a minimum adequate model  

that explained the variation in the sample set. 

Variables Estimate Standard Error t value Significance Pr(>|t|) Significance Code 

(Intercept) -1.553e-⁰¹ 1.670e-⁰¹ -0.930   0.353 ns 

HSI 1.131e⁺⁰⁰ 2.733e-⁰¹ 4.137 4.03e⁻⁰⁵ *** 

Reef Size 8.104e-⁰⁸ 5.456e-⁰⁸ 1.485   1.38e-⁰¹ ns 

Cultch 4.244e-⁰¹ 1.303e-⁰¹ 3.257   1.19e-⁰³ ** 

HSI x Reef Size -3.447e-⁰⁷ 1.301e-⁰⁷ -2.650   8.27e-⁰³ ** 

 
 

 

(Dispersion parameter for quasipoisson family taken to be 2.010221) 

Null deviance: 705.11 on 583 degrees of freedom 

Residual deviance: 633.24 on 579 degrees of freedom 

Number of Fisher Scoring iterations: 5 

Shapiro-Wilk Normality Test  Post-Tukey’s Transformation (^0.375) Shapiro-Wilk Normality Test 

W = 0.40793, p-value < 2.2e-16  W = 0.66965, p-value < 2.2e-16 

glm formula = (Abundance ~ HSI + Reef Size + Cultch Quality + HSI: Reef Size, Family = quasipoisson) 

Deviance Residuals:  

 Min             1Q           Median            3Q            Max   

-2.0674      -0.6073           -0.3739      0.1117        9.9277 

 

“Variables” indicate the data types fed into the model. ”Significance” is the specific probability of how frequently the  

variable would be found by chance (follows Student’s t distribution) and “Significance Code”    represents significance  

 level as follows: “ns” is not significant, “***” is to 0.001, “**” is to 0.01, “*” is to 0.05. 
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Discussion 
 

Although suitability studies have been focused on Louisiana and the Northern Gulf of Mexico, 

none have been applied to Barataria Basin (Cake 1983, Chatry et al. 1983, Soniat & Brody 1988, 

Starke et al. 2011, Pollack et al. 2012, Soniat et al. 2013, Swannack et al. 2014). Two studies 

focused on Breton Sound, Louisiana (Chatry et al. 1983, Soniat et al. 2013), one on the Hudson 

River and New York Harbor (Starke et al. 2011), two were applied to estuaries in Texas (Soniat 

& Brody 1988, Pollack et al 2012), and one compared suitability between Western Mississippi 

Sound and Chesapeake Bay (Swannack et al. 2014). All of the explored studies include cultch as 

a factor with the exception of the 1983 salinity only strategy employed by Chatry et al. (Cake 

1983; Chatry et al. 1983; Soniat & Brody 1988; Starke et al. 2011; Pollack et al 2012; Soniat et 

al 2013, Swannack et al. 2014). The Soniat et al. 2013 and Swannack et al. 2014 models 

calculate an HSI for a year, whereas others calculate a single HSI based on multi-year data. 

(Cake 1983; Chatry et al. 1983; Soniat & Brody 1988; Starke et al. 2011; Pollack et al 2012; 

Soniat et al 2013, Swannack et al. 2014). The average and standard deviation of historic 

temperatures was included in the model by Pollack et al. (2012); Starke et al. (2011) only 

included temperatures taken from May through November when high temperatures were 

prevalent, and none of the other models were inclusive of temperature effects as SI variables. 

The current HSI model incorporates different SI relationships that account for the effects of 

salinity due to temperature variances, one for cool (applied to October-March) and one for warm 

temperatures (applied to April-September). It attempts to expand upon the previous designs by 

creating annual, salinity and temperature driven, index distributions that identify past regions 

suitable for C. virginica. The intended use for these historic annual distributions is to compare 

and correlate HSI with hydrographic events and serve as a baseline prior to the implementation 
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of  proposed freshwater and sediment diversions.  This can be instrumental in the placement of 

reef restoration projects in both Barataria and Pontchartrain Basins as diversions are 

implemented.   

All diversions were open during 2012-2016 (except for the Bonnet Carré spillway which was 

closed until its opening in 2016) allowing the discharge to be impacted by natural events 

(excessive rain/flood/storm/drought), or a lack thereof (Table 1). Freshwater influx from the 

Pearl River and tributaries flowing into Lakes Maurepas and Pontchartrain (USGS 2018; Table 

10), in addition to Bonnet Carré spillway openings (Table 1) resulted in historically low HSI 

values in the Pontchartrain Basin, especially near upper Lake Borgne (Figures 14-63). The 

drought of 2011 that extended into March of 2012 (Table 1) is associated with high HSI values 

(0.9-1.0) nearer Chandeleur Sound that declined across Biloxi Marsh to 0.3 near the mouth of 

Lake Borgne (Figures 58-59). Tropical Storm Debby in late June of 2012 (Table 1) produced a 

storm surge of 1-5 feet with sustained winds up to 36 mph. (NASA 2018, NOAA 2018), and in 

late August, Hurricane Isaac landed east of the Mississippi Delta (Table 1) with 75 mph. 

sustained winds, over 20 inches of rain, and a storm surge of 8-13 feet, in Plaquemines and St. 

Bernard that extended into Lake Pontchartrain (NASA 2018). Increased fresh water flow from 

Lakes Maurepas, Pontchartrain, and the Pearl River outlet depressed HSI values near the 

Rigolets and in Lake Borgne (Table 10, Figure 59).  Drought conditions  occurred  from  August  

to  October  2013,  which  likely  contributed to  the  maintained  high  HSI  values  in  

Chandeleur  Sound  (Figures  60-61); during 2013 and 2014 no major storms occurred (NASA 

2018; Table 1) (Figures 60-61). Pearl River flow in 2013 kept HSI values depressed near the 

Rigolets (Table 10, Figure 60), however a drop in cfs in 2014 and 2015 resulted in patchy areas 

of increased values (Table 10, Figure 61). August to October 2015 (Table 1) were characterized 
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by drought conditions which maintained high HSI values near to Chandeleur Sound; the mouth 

of Lake Borgne showed low values (0.1-0.3) with only small patches of higher ones (Figure 62). 

The drought of 2016 did not come until later in October (NASA 2018) minimizing its effects on 

suitability, and there were no storms of high impact (storm surge) that year to push saline waters 

inland. The Pearl River had an increase in cfs from 2015 to 2016 which resulted in a gulfward 

shift of suitable areas, creating unsuitable areas in Lake Borgne, and only mid-range (0.4-0.5) in 

the wetlands leading to Chandeleur Sound (Table 10, Figure 63). 

The salinity of inland northwest Breton Sound has been influenced by the Caernarvon Diversion 

since 1991, White’s Ditch Diversion since 1963, and the Violet Siphon since 1957. Before 

implementation of the Caernarvon Diversion in 1991 (Table 1), the wetlands in upper 

Plaquemines, St. Bernard and Delacroix displayed HSI values from low (0.0-0.4) to intermediate 

(0.4-0.7) (Figures 11-38). Once the diversion was employed, HSI remained low through 2016, 

except in 2000 which may be attributed to drought conditions (Table 1, Figures 38-63).  

Fluctuations in water flow from the Caernarvon diversion correspond to the shift in HSI in 

Breton Sound from 2012-2016 (Table 10, Figures 59-63; USGS 2018). Down river from 

Caernarvon, the Bohemia Spillway (1924-present), Mardi Gras Pass (2011-present), Ostrica 

Lock (2011-present), Fort St. Philip crevasses (2006-present), Channel Armor Gap crevasse 

(1997-present), and Bayou Lamoque structures (1978-present) provide additional freshwater, 

nutrients and sediment to southern Breton Sound (Teal et al. 2012, Lopez et al. 2014). The 

droughts of 2011-2012 and 2015-2016 (Table 1) appear to have had no obvious impact upon HSI 

in the northeastern wetlands of Breton Sound as they and the areas directly east of the 

Mississippi River consistently saw low values of  0.0-0.1 (Figures 58-63). The HSI of Breton 

Sound sample stations (Figure 64) ranged from 0.1-0.7, rising nearer the MRGO possibly due to 
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storm surge from Hurricane Isaac (NASA 2018, NOAA 2018; Figures 59-63). The lack of 

storms in 2013-2014 (Table 1) resulted in a slight shift of suitable HSI into Chandeleur Sound 

(Figures 60-61). During 2015 and 2016 conditions were similar, although the southern-most 

sample site (Battledore Reef) increased to mid-range values (0.4-0.5) (Figures 62-63).  

Barataria Bay has been subject to freshwater input from the northern location of Davis Pond 

(2001-present)  which contributed to consistently low HSI values in the upper Barataria Basin 

assessment sites (North Hackberry Bay 2004 Shell Plant, 2008 and 2012 Cultch Plants, 

Hackberry Bay 2014 Cultch Plant, Mid and Upper Hackberry Bay) (Table 1, Figures 1 & 40-64). 

There was a roughly 50% decrease in cfs for the Davis pond diversion from 2011 to 2012 

allowing storm surges to push saline water inland, raising the HSI near the upper Barataria Basin 

assessment sites from intermediate (0.5-0.6) to high levels (0.7-0.8); the cfs almost doubled in 

2013, dropping the suitability below 0.4, dropped by about 55% in 2014 raising the suitability 

back up to 0.7, rose again by about 60% dropping suitability back to 0.3, and returned to very 

near the 2014 value again in 2016 however the suitability remained low (0-0.1) (Figures 59-64, 

Tables 7 & 8). The mouth of Barataria Bay (spanning from western Grand Isle to Bay Long), is 

subject to more saline gulf waters which likely explain the general gradient of HSI 0.4 in the 

eastern marshes (near Port Sulphur, between the West Pointe a la Hache and West Bay 

Diversions) to 0.8 in the west (Caminada Bay), that spanned all 5 study years (Figures 1 & 59-

63).  The droughts of 2011 - 2013, and storm surges from Hurricane Isaac and Tropical Storms 

Lee, Debby and Karen, correlate with the spread of intermediate to high HSI areas across the 

mouth of Barataria Basin from 2011-2013 explaining the intermediate to high values for the 

South Hackberry 2004 Shell Plant (0.8-0.6), and Barataria Bay 2004 Cultch Plant (0.6-0.7) 

(Tables 1 & 8, Figures 59-64). There were no impactful storms to force saline water inland, nor 
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was there a drought in 2014 (Table 1). Combined with coastal flooding in 2013 and 2015, this 

may have resulted in restoration of freshwater flow levels at the West Pointe a la Hache and 

West Bay diversions thus reducing the HSI in the wetlands between them from 0.4 in 2012 and 

2013, to 0.3 in 2014 nearing 0.0 in 2015 (Table 1, Figures 1 & 59-63). The influence was 

minimal for the Barataria Bay 2004 Cultch plant which fluctuated from 0.5-0.7 through 2015 

(Figures 60-62). The small rise in suitability to 0.7 at the South Hackberry Shell Plant site 

correlated with the drop in flow at Davis Pond in 2014 and the drop to 0.5 the following year to 

the 2015 rise in flow (Table 10, Figures 61-62). The drought in 2016 and drop in cfs at the Davis 

Pond diversion correlate with the expansion of suitable habitat across the mouth of Barataria 

Basin from a narrow more western area in 2015, to a broader (and more inland) area in 2016 

(Table 1, Figures 62-63), however the lower HSI values at both the South Hackberry Shell Plant 

and the Barataria Bay 2004 Cultch Plant are inexplicable unless there is a time lag to the effect 

(Figures 62-64).  

 Generalized linear modeling indicated that year, quality cultch, and the interaction between year 

and quality cultch were the most significant factors influencing oyster spat abundance (p<0.001), 

followed by HSI and the interactions of HSI and reef size, HSI and quality cultch, HSI and year, 

HSI with reef size and year, and HSI and cultch quality with year (p<0.01), reef size, the 

interaction of reef size with cultch quality, and the interaction of reef size with year (p<0.05) 

(Table 6). In any given year stochastic events may occur that affect salinity-- such the droughts 

of 2011-2013 and 2015-2016, coastal flooding in 2013 and 2015, storms in 2011-2013 and 2015, 

and the opening of the Bonnet Carré spillway in 2016 (Pollack et al. 2011, Kennicutt II 2017; 

Table 10). Year is thus a partial proxy of annual variations in salinity which affect HSI. Years 

with greatest spat abundance should correspond to years with suitable spawning salinities 
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between 20 and 22; however, spat are more tolerant than larger size classes of low salinity 

(Chatry 1983, Kennicutt 2017, Lowe et al. 2017).  “Year” also subsumes stochastic events that 

are independent of annual salinity variation. For example, storms can deposit re-suspended 

sediment on reefs thus reducing cultch quality or, in other cases, sweep buried reefs clean of 

sediment and create a new suitable bottom (Conner et al. 1989).  The importance of quality 

cultch to settling of spat has been incorporated into HSI models (Cake 1984, Soniat and Brody, 

1988, Starke et al. 2011).  Reefs with higher relief are less subject to sedimentation and hypoxia, 

and provide more areas of refuge for spat (Chatry et al. 1983, Roegner & Mann 1995, Brown 

1996, Lenihan & Peterson 1998, Luckenbach et al. 1999, Soniat et al. 2004, LaPeyre et al. 2009). 

The interaction between year and quality cultch is not surprising in that year is a partial proxy for 

salinity. The relationship between spat abundance and HSI indicates that the model captures the 

salinity requirements of reproduction, spat set, and initial spat survival. The interaction between 

HSI and reef size suggests that larger reefs with quality cultch likely have more spawning adults 

that initiate setting via waterborne chemical (Zimmer-Faust & Tamburri 1994). The interaction 

between HSI and quality cultch is indicative of the need for suitable salinity and quality substrate 

for successful spat set. The interaction of HSI and year implies that events independent of the 

HSI such as storms, droughts and diversion enactments affect the salinity suitability.  The 

combined importance of HSI, year and reef size indicates the interactive importance of proper 

salinity (as incorporated into the HSI) without damaging events, and a sufficient reef footprint in 

promoting spat settlement. The interaction between HSI, year and cultch quality indicates the 

significance of the effects of stochastic events upon salinity and amount of quality cultch 

available to settling spat. The relationship of reef size to spat abundance may be related to the 

increased possibility of larval encounter with a hard bottom (O’Beirn et al 2000). The interaction 
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of reef size and cultch quality points to a need for an adequate amount of suitable cultch upon a 

reef to enhance the possibility of spat set. The importance of the combined effects of reef size 

and year could indicate that some events fragment habitat by destroying it (ie: wave action) or 

changing its suitability by uncovering or burying it. 

HSI, year, and the interaction between the HSI and cultch quality, were the most 

important factors influencing oyster seed abundance (p<0.001) (Table 7). The amount of quality 

cultch, and the interaction between year x cultch quality (p<0.01), reef size, the interactions of 

HSI and reef size, reef size x quality cultch, and HSI x reef size x quality cultch were also 

significant (p<0.05) (Table 7). The contribution of many of the above factors to seed abundance 

may be simply be due to the requirements of spat which survive and grow to seed size – amount 

of quality cultch, the interaction of HSI with reef size and year, and the HSI x  cultch quality 

interaction are examples. For instance, it is not surprising that the interaction of HSI with quality 

cultch is also a significant factor in seed abundance. However, quality cultch and the interaction 

of cultch and year may further promote seed abundance through enhanced survival on quality 

reefs with suitable salinity and a lack of harmful stochastic events within a year (Luckenbach et 

al. 1999, O’Beirn et al. 2000, Soniat et al. 2004).  

 HSI was the most influential variable for sack oyster abundance (p<0.001), followed by 

the presence of quality cultch, and the interaction of HSI with reef size (p<0.01) (Table 8). 

Suitable salinity, an integral component of the HSI, limits mortality due to predators and disease, 

and mortality due to freshets (Ray 1954, Chatry et al. 1983, Soniat 1985, Stanley and Sellers 

1986, Craig et al. 1989, Bushek & Allen, 1996). The significance of quality cultch to sack oyster 

abundance tracks the requirement for spat set, and spat and seed survival (Brown 1996, Lenihan 

& Peterson 1998, Soniat 2004). Quality cultch, however, may be directly related to sack oyster 
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abundance. Quality cultch provides a firmer substrate to support growing oysters (Cake 1983). 

Furthermore, it is difficult to determine cause and effect in the relationship between sack 

abundance and reef quality. Quality cultch provides substrate for setting larvae that grow into 

large oysters, and an abundance of large oysters upon death in place supply cultch. The 

significant interaction of HSI with reef size suggests that sack oysters are more abundant when 

salinity and temperature are suitable where habitat fragmentation is minimal (Lenihan et al. 

1999). 

The current HSI responds positively to mid-range salinities and negatively to salinity 

extremes, with the magnitude of the response influenced by temperature at low salinities. The 

model delineates areas suitable for oyster cultivation in the past and can predict the effects of 

freshwater diversions on the future distribution of oysters. An increased flux of sediment and 

fresh water from proposed diversions will shift the suitable zone for oyster cultivation down-

estuary. Legacy HSI visualizations show annual fluctuations in the distribution of zones suitable 

for oyster cultivation prior to the proposed diversions. Hydrographic models of the effects of 

future diversions on the distribution of salinity, coupled with the HSI, enable predictions of 

suitable locations for oyster cultivation post-diversion. A caveat of the present model is the 

assumption that all non-modeled conditions are within suitable ranges. While some factors (e.g. 

annual mean temperature, minimum and maximum annual temperature) are clearly within the 

suitable ranges, it is uncertain if others (e.g., dissolved oxygen) are. Because of insufficient data 

on dissolved oxygen, it was not included in the HSI. Increased freshwater from diversions will 

push the suitable zone for oyster cultivation seaward toward existing hypoxic areas. 

Incorporation of dissolved oxygen into future models will more precisely delineate the optimal 

zone for future oyster cultivation.    
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Appendix 

 
 

Figure 6: Coastwide Reference Monitoring Service (CRMS) 
Salinity Data Collection Stations 
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Figure 7: Louisiana Department of Wildlife and Fisheries (LDWF) 

Salinity Data Collection Stations 
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Figure 8: Lake Pontchartrain Basin Foundation LPBF) 

Salinity Data Collection Stations 
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Figure 9: National Oceanic and Atmospheric Administration (NOAA) 

Salinity Data Collection Stations 
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Figure 10: United States Geological Survey (USGS) 

Salinity Data Collection Stations 
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Figure 11: Original Minimum Monthly Salinity Relationships 

Suitability Index 3: Cool months (Oct-Mar) relationship original definition: 
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Figure 12: Original Minimum Monthly Salinity Relationships: 

Suitability Index 3: Warm months (Apr-Sept) relationship original definition: 
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Figure 13: 2016 H.S.I. maps: before (left) and after (right): 

The change in the relationship corrected false high H.S.I. values in high salinity offshore locations thus improving 

the accuracy of the new H.S.I. as evidenced by the example above. 
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Figure 14 : Habitat Suitability Index (HSI) 1967 
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Figure 15 : Habitat Suitability Index (HSI) 1968 
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Figure 16 : Habitat Suitability Index (HSI) 1969 
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Figure 17 : Habitat Suitability Index (HSI) 1970 
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Figure 18 : Habitat Suitability Index (HSI) 1971 
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Figure 19 : Habitat Suitability Index (HSI) 1972 
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Figure 20 : Habitat Suitability Index (HSI) 1973 
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Figure 21 : Habitat Suitability Index (HSI) 1974 
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Figure 22 : Habitat Suitability Index (HSI) 1975 
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Figure 23 : Habitat Suitability Index (HSI) 1976 
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Figure 24 : Habitat Suitability Index (HSI) 1977 
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Figure 25 : Habitat Suitability Index (HSI) 1978 
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Figure 26 : Habitat Suitability Index (HSI) 1979 
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Figure 27 : Habitat Suitability Index (HSI) 1980 
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Figure 28 : Habitat Suitability Index (HSI) 1981 
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Figure 29 : Habitat Suitability Index (HSI) 1982 
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Figure 30: Habitat Suitability Index (HSI) 1983 
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Figure 31: Habitat Suitability Index (HSI) 1984 
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Figure 32: Habitat Suitability Index (HSI) 1985 
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Figure 33: Habitat Suitability Index (HSI) 1986 
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Figure 34: Habitat Suitability Index (HSI) 1987 
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Figure 35: Habitat Suitability Index (HSI) 1988 
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Figure 36: Habitat Suitability Index (HSI) 1989 
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Figure 37: Habitat Suitability Index (HSI) 1990 
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Figure 38: Habitat Suitability Index (HSI) 1991 
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Figure 39: Habitat Suitability Index (HSI) 1992 
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Figure 40: Habitat Suitability Index (HSI) 1993 
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Figure 41: Habitat Suitability Index (HSI) 1994 
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Figure 42: Habitat Suitability Index (HSI) 1995 
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Figure 43: Habitat Suitability Index (HSI) 1996 
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Figure 44: Habitat Suitability Index (HSI) 1997 
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Figure 45: Habitat Suitability Index (HSI) 1998 
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Figure 46: Habitat Suitability Index (HSI) 1999 
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Figure 47: Habitat Suitability Index (HSI) 2000 
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Figure 48: Habitat Suitability Index (HSI) 2001 
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Figure 49: Habitat Suitability Index (HSI) 2002 
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Figure 50: Habitat Suitability Index (HSI) 2003 
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Figure 51: Habitat Suitability Index (HSI) 2004 
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Figure 52: Habitat Suitability Index (HSI) 2005 
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Figure 53: Habitat Suitability Index (HSI) 2006 
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Figure 54: Habitat Suitability Index (HSI) 2007 
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Figure 55: Habitat Suitability Index (HSI) 2008 
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Figure 56: Habitat Suitability Index (HSI) 2009 
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Figure 57: Habitat Suitability Index (HSI) 2010 
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Figure 58: Habitat Suitability Index (HSI) 2011 
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Figure 59: Habitat Suitability Index (HSI) 2012 
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Figure 60: Habitat Suitability Index (HSI) 2013 
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Figure 61: Habitat Suitability Index (HSI) 2014 
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Figure 62: Habitat Suitability Index (HSI) 2015 
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Figure 63: Habitat Suitability Index (HSI) 2016 
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Figure 64: LDWF Reef Locations Oyster Abundance Stock Assessment Sampling 
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Table 9: 

LDWF (2016): Stock Assessment Reef Locations.  

STATION  Lat DD Long DD Spat Years Seed Years Sack Years 

3-Mile 30.03917 -89.3528 2012, 2015-

2016 

 

2012-2016 2012-2016 

3-Mile Pass  

2013 Cultch Plant 

 

30.0612 -89.373 2016 

 

2016 2016 

Cabbage Reef 30.15306 -89.2256 2012-2016 

 

2013-2015 N/A 

Drum Bay 29.88861 -89.2919 2012, 2015-

2016 

 

2012-2016 2012-2013, 2015-2016 

 

Drum Bay  

2013 Cultch Plant 

 

29.88549 -89.2868 2016 2016 

 

2016 

E. Karako 30.02 -89.2339 2013, 2016 2013, 2015-2016 

 

2013, 2016 

Grand Banks 30.14778 -89.3603 2012, 2014, 

2016 

2013-2014, 2016 

 

2014 

Grand Pass 
*not included in map analysis 

 

29.25861 -90.9333 2012, 2014, 

2016 

 

N/A N/A 

Grassy 30.15 -89.4667 2012-2013, 

2015 

 

2012-2016 2015-2016 

Halfmoon 30.11944 -89.4319 2012 2012, 2014, 2016 

 

2012, 2014, 2016 

Johnson Bayou 30.0875 -89.3108 2012-2013, 

2016 

2012-2013, 2016 

 

N/A 

Millenium Reef 30.11278 -89.4461 2012, 2014, 

2016 

2012, 2014, 2016 

 

2014-2016 

Morgan Harbor 29.79583 -89.3286 2009, 2012, 

2015 

2012-2013, 2015 

 

2012, 2014 

Petit 30.09806 -89.4789 2013, 2015 2012-2016 2012-2016 

 

Round Island  

2011 Cultch Plant 

 

30.1182 -89.455 2012, 2014-

2016 

2012, 2014-2016 

 

2012, 2014-2016 

 

Shell Point 30.02306 -89.3519 2012-2014, 

2016 

 

2012-2016 2012-2016 

Turkey Bayou 30.10472 -89.2986 2012-2014 

 

2012-2016 2012 

W. Karako 30.01194 -89.2831 2012-2013, 

2016 

 

2012-2013, 2016 2012-2016 

Battledore Reef 29.46412 -89.4288 2012, 2014 

 

2014 N/A 

Bay Crabe 29.55697 -89.5768 2013 

 

2013 2012 
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Table 9: 

LDWF (2016): Stock Assessment Reef Locations.  

STATION  Lat DD Long DD Spat Years Seed Years Sack Years 

Bay Gardene 29.58272 -89.6458 N/A 2012-2013 2012 

 

Bay Long 29.50833 -89.5917 N/A 2014 

 

2012, 2014 

Bayou Lost 29.60088 -89.6173 N/A 2013 

 

2012, 2014 

Black Bay 29.59685 -89.5657 N/A 2013-2014 2012, 2014-2015 

 

California Bay 29.51112 -89.5667 N/A 2013 2012-2013 

 

California Bay 

2011 Cultch Plant 

 

29.50694 -89.5639 N/A 2014 N/A 

 

Curfew 29.53685 -89.5335 N/A 2013 2012-2015 

 

E. Bay Crabe 29.55665 -89.5698 N/A N/A 2014 

 

E. Bay Gardene 29.58167 -89.622 N/A 2014 2012-2013 

 

E. Pelican 29.49952 -89.5265 2013 2013 N/A 

 

E. Stone 29.58306 -89.5147 N/A 2013 2012 

 

Elephant Pass 29.54125 -89.5641 N/A 2014 2012, 2015-2016 

 

Horseshoe Reef 29.60261 -89.4939 2013-2014 

 

2013 2012 

Jessie 29.63502 -89.6182 2014 2012-2014 2012-2014 

 

Lake Fortuna  

2012 Cultch Plant 

 

29.6794 -89.4849 N/A 2015-2016 2015 

 

Lonesome 29.61355 -89.5568 2013 2013 2013-2014 

 

Mangrove  29.479 -89.5403 N/A N/A 2015 

 

N. Black Bay 29.61278 -89.509 2012 N/A N/A 

 

N. California Bay 29.5279 -89.541 N/A 2013-2014 

 

2012-2015 

N. Lake Fortuna 29.6502 -89.5044 2012-2014 2012-2014, 2016 

 

N/A 

N. Lonesome 29.62153 -89.5643 2013 2013 2014-2015 

 

S. Black Bay 29.56033 -89.5344 2013 2012-2013 

 

2015 

S. Lake Fortuna 29.6502 -89.5044 2012-2013 

 

2012-2013 2014 

Snake 29.63397 -89.5642 2013-2014 2013-2014 2012-2015 
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Table 9: 

LDWF (2016): Stock Assessment Reef Locations.  

STATION  Lat DD Long DD Spat Years Seed Years Sack Years 

Stone 29.57612 -89.5415 N/A 

 

2013 2012, 2015 

Sunrise Point 29.49475 -89.5666 N/A 

 

2013 N/A 

Telegraph 29.516 -89.5323 N/A 2013 2012, 2014 

 

W. Bay Crabe 29.56522 -89.5866 N/A 2013 2012-2014 

 

W. Pelican 29.52278 -89.5564 N/A 2013-2014 2012, 2014 

 

Wreck 29.56472 -89.4831 2013, 2016 2013, 2016 2016 

 

Barataria Bay  

2004 Cultch Plant 

 

29.33028 -89.94 2013-2015 N/A N/A 

 

N. Hackberry  

2004 Shell Plant 

 

29.41722 -90.0325 2012-2016 2012-2016 2012-2014, 2016 

 

S. Hackberry  

2004 Shell Plant 

 

29.33028 -90.0525 2012-2016 2012-2016 2012-2015 

 

2008 Cultch Plant 29.42528 -90.0153 2012-2016 2012-2016 2012-2016 

 

2012 Cultch Plant 29.42007 -90.052 2013, 2016 2013,  

2015-2016 

2013,  

2015-2016 

 

Hackberry 

 2014 Cultch Plant 

 

29.42099 -90.0231 2015-2016 2016 2016 

 

Lower Hackberry 29.38822 -90.0525 2012, 2014 2012-2014 

 

2012-2014 

Middle Hackberry 29.40169 -90.0292 2012, 2014 2012-2015 

 

2012-2016 

Upper Hackberry 29.42164 -90.0307 2012-2016 2012-2016 2012-2013, 

2015-2016 

 
“Station” refers to the common name of the general area where the data was collected. “Lat DD” and “Long DD” 

indicate global positioning decimal degrees of latitude and longitude respectively. ”Spat Years” indicates that spat 

abundance data was available for HSI calculation in the specified years. ”Seed Years” indicates that seed abundance 

data was available for HSI calculation in the specified years. ”Sack Years” indicates that sack abundance data was 

available for HSI calculation in the specified years – N/A indicates no available data. 
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Table 10. 

USGS Streamflow information.  

Year Gage CFS Area Up / Down 

2011 USGS 07374525 Mississippi River at 

Belle Chasse, LA 

19502454000 Barataria Basin and 

Breton Sound 

Down 

2011 USGS 295501090190400 Davis Pond 

Freshwater Diversion near Boutte, LA 

75316794 Barataria Basin Down 

 

2011 USGS 07381235 GIWW West of Bayou 

Lafourche at Larose, LA 

29338737.93 Barataria and 

Terrebonne Basins 

Down 

2011 USGS 07376500 Natalbany River at 

Baptist 

895026.39 Lake Maurepas Down 

2011  USGS 07376000 Tickfaw River at 

Holden, LA 

3284599.1 Lake Maurepas Down 

2011 USGS 07375500 Tangipahoa River at 

Robert, LA 

11292849 Lake Pontchartrain Down 

2011 USGS 07375000 Tchefuncte River near 

Folsom, LA 

1695150.6 Lake Pontchartrain Down 

2011  USGS 295124089542100 Caernarvon 

Outfall Channel at Caernarvon, LA 

52591611 (Upper and into) Breton 

Sound 

Down 

2011  USGS 02492000 Bogue Chitto River 

near Bush, LA 

23830871 Pearl River/ Rigolets Down 

2011  USGS 02489500 Pearl River near 

Bogalusa, LA 

120782150 Rigolets Down 

2012 USGS 07374525 Mississippi River at 

Belle Chasse, LA 

12718023310 Barataria Basin and 

Breton Sound 

Down 
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Table 10. 

USGS Streamflow information.  

Year Gage CFS Area Up / Down 

2012 USGS 295501090190400 Davis Pond 

Freshwater Diversion near Boutte, LA 

36845314.1 Barataria Basin Down 

2012 USGS 07381235 GIWW West of Bayou 

Lafourche at Larose, LA 

32211543.83 Barataria and 

Terrebonne Basins 

Up 

2012 USGS 07376500 Natalbany River at 

Baptist 

3268771.24 Lake Maurepas Up 

2012  USGS 07376000 Tickfaw River at 

Holden, LA 

5326592.6 Lake Maurepas Up 

2012 USGS 07375500 Tangipahoa River at 

Robert, LA 

21721529 Lake Pontchartrain Up 

2012  USGS 295124089542100 Caernarvon 

Outfall Channel at Caernarvon, LA 

38505237.13 (Upper and into) Breton 

Sound 

Down 

2012  USGS 02492000 Bogue Chitto River 

near Bush, LA 

32439315 Pearl River/ Rigolets Up 

2012  USGS 02489500 Pearl River near 

Bogalusa, LA 

169526530 Rigolets Up 

2013 USGS 07374525 Mississippi River at 

Belle Chasse, LA 

17916993000 Barataria Basin and 

Breton Sound 

Up 

2013 USGS 295501090190400 Davis Pond 

Freshwater Diversion near Boutte, LA 

71760174.1 Barataria Basin Up 

2013 USGS 07381235 GIWW West of Bayou 

Lafourche at Larose, LA 

37341674.3 Barataria and 

Terrebonne Basins 

Up 
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Table 10. 

USGS Streamflow information.  

Year Gage CFS Area Up / Down 

2013 USGS 07376500 Natalbany River at 

Baptist 

4105404.69 Lake Maurepas Up 

2013  USGS 07376000 Tickfaw River at 

Holden, LA 

7735635.7 Lake Maurepas Up 

2013 USGS 07375500 Tangipahoa River at 

Robert, LA 

22354838 Lake Pontchartrain Up 

2013  USGS 295124089542100 Caernarvon 

Outfall Channel at Caernarvon, LA 

35031819.48 (Upper and into) Breton 

Sound 

Down 

2013  USGS 02492000 Bogue Chitto River 

near Bush, LA 

41718235 Pearl River/ Rigolets Up 

2013  USGS 02489500 Pearl River near 

Bogalusa, LA 

267324150 Rigolets Up 

2014 USGS 07374525 Mississippi River at 

Belle Chasse, LA 

17224822000 Barataria Basin and 

Breton Sound 

Down 

2014 USGS 295501090190400 Davis Pond 

Freshwater Diversion near Boutte, LA 

32211338.5 Barataria Basin Down 

2014 USGS 07381235 GIWW West of Bayou 

Lafourche at Larose, LA 

44146095.75 Barataria and 

Terrebonne Basins 

Up 

2014 USGS 07376500 Natalbany River at 

Baptist 

3771254.59 Lake Maurepas Down 

2014  USGS 07376000 Tickfaw River at 

Holden, LA 

11005240.6 Lake Maurepas Up 
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Table 10. 

USGS Streamflow information.  

Year Gage CFS Area Up / Down 

2014 USGS 07375500 Tangipahoa River at 

Robert, LA 

17302448 Lake Pontchartrain Down 

2014  USGS 295124089542100 Caernarvon 

Outfall Channel at Caernarvon, LA 

17911305.68 (Upper and into) Breton 

Sound 

Down 

2014  USGS 02492000 Bogue Chitto River 

near Bush, LA 

29958670 Pearl River/ Rigolets Down 

2014  USGS 02489500 Pearl River near 

Bogalusa, LA 

170416350 Rigolets Down 

2015 USGS 07374525 Mississippi River at 

Belle Chasse, LA 

21739573000 Barataria Basin and 

Breton Sound 

Up 

2015 USGS 295501090190400 Davis Pond 

Freshwater Diversion near Boutte, LA 

51760462.13 Barataria Basin Up 

2015 USGS 07376500 Natalbany River at 

Baptist 

5485228.9 Lake Maurepas Up 

2015  USGS 07376000 Tickfaw River at 

Holden, LA 

17867620.6 Lake Maurepas Up 

2015 USGS 07375500 Tangipahoa River at 

Robert, LA 

20358587 Lake Pontchartrain Up 

2015 USGS 07375000 Tchefuncte River near 

Folsom, LA 

3458266.3 Lake Pontchartrain Up *(2011) 

2015  USGS 295124089542100 Caernarvon 

Outfall Channel at Caernarvon, LA 

13910539.71 (Upper and into) Breton 

Sound 

Down 
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Table 10. 

USGS Streamflow information.  

Year Gage CFS Area Up / Down 

2015  USGS 02492000 Bogue Chitto River 

near Bush, LA 

26312777 Pearl River/ Rigolets Down 

2015  USGS 02489500 Pearl River near 

Bogalusa, LA 

141811000 Rigolets Down 

2016 USGS 07374525 Mississippi River at 

Belle Chasse, LA 

21105005000 Barataria Basin and 

Breton Sound 

Down 

2016 USGS 295501090190400 Davis Pond 

Freshwater Diversion near Boutte, LA 

32417045.22 Barataria Basin Down 

2016 USGS 07376500 Natalbany River at 

Baptist 

9571490.9 Lake Maurepas Up 

2016  USGS 07376000 Tickfaw River at 

Holden, LA 

23461178 Lake Maurepas Up 

 

2016 

USGS 07375500 Tangipahoa River at 

Robert, LA 

38007443 Lake Pontchartrain Up 

2016 USGS 07375000 Tchefuncte River near 

Folsom, LA 

10767300.1 Lake Pontchartrain Up 

2016  USGS 295124089542100 Caernarvon 

Outfall Channel at Caernarvon, LA 

4167202.09 (Upper and into) Breton 

Sound  

Down 

2016  USGS 02492000 Bogue Chitto River 

near Bush, LA 

43126209 Pearl River/ Rigolets Up 

2016  USGS 02489500 Pearl River near 

Bogalusa, LA 

188235550 Rigolets Up 

 

“Year” indicates the year that the data was taken. “Gage” is the title and location where data was collected. 

“CFS” stands for cubic feet per second of water flow. “Area” is the study location relevant to the gage. “Up / Down” 

indicates a raise or decline in CFS from the previous year. “*” indicates last year that data was available. 
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